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1 Introduction

Recent advances in new trade theory develop a straightforward method to evaluate the

welfare gains from trade. Most notably, Arkolakis, Costinot, and Rodriguez-Clare (2012)

show that a researcher only needs to know two sufficient statistics in order to measure the

welfare gains from trade: the share of a country’s expenditure on domestically produced

goods and a partial elasticity of trade flows with respect to variable trade costs. While

the share of expenditure on domestic goods can be computed from the aggregate data that

are often publicly available, a more rigorous analysis is needed to infer the value of the

partial trade elasticity. In particular, as shown in Melitz and Redding (2015), to estimate

the partial trade elasticity a researcher needs to observe the entire distribution of log-export

sales including the export sales of the smallest exporter.

The challenge in measuring the partial trade elasticity often lies in an inability to em-

pirically observe the entire distribution of log-export sales. For example, exporters may not

be required to report export sales below a given threshold, as is the case for frequently used

European Union export data. This threshold can vary from as low as 700 euros for intra-

EU trade with Malta to as large as over 1 million euros for intra-EU trade with Belgium,

Netherlands, or the United Kingdom (EUROSTAT, 2017). When a portion of export sales

transactions are missing from the data, the econometrician will be unable to correctly infer

the underlying distribution of log-export sales and the export sales of the marginal exporter.

As a result, the partial trade elasticity would be mismeasured and, therefore, so would the

gains from trade.

In this paper, we examine Brazilian export data that, unlike many trade data sets, keep

a full record of small export sales. We provide novel evidence on the properties of the dis-

tribution of log-export sales; show that a Double Exponentially Modified Gaussian (EMG)

distribution parsimoniously captures these properties; quantify trade elasticities derived from

a trade model with heterogeneous firms that features the Double EMG distribution; and show

that data truncation leads to overestimation of the partial trade elasticity and underestima-

tion of the gains from trade. This paper proceeds as follows.

First, using Brazilian export data, we document new empirical evidence of asymmetry

within log-export sales distributions. The two novel forms of asymmetry that stand out from

the data are (i) substantial heterogeneity in positive and negative skewness across log-export

sales distributions and (ii) the prevalence of a large mass of firms (power laws) in the left

tails in log-export sales distributions. For comparison, we recompute our statistics for a

sample in which we drop firm export sales below a given threshold and find that properties

of truncated log-export sales distributions resemble those found in previous work that relies
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on truncated data sets.

Second, we introduce the Double Exponentially Modified Gaussian (Double EMG) distri-

bution and show that the distribution can parsimoniously capture the prevalent asymmetry

and tail fatness in the empirical log-export sales distributions. The Double EMG distribu-

tion is constructed as a sum (convolution) of independent Normal and Double Exponential

distributions. The Normal component of the distribution leads to a bell-shaped distribu-

tion, which is a common property of empirical log-export sales distributions. The Double

Exponential component leads to varying mass (fatness) in the right- versus left-tails of the

Double EMG distribution. We subsequently fit the Double EMG distribution to empirical

log-export sales distributions across export destinations. We find that the Double EMG

distribution matches the micro-data better than a number of alternative distributions con-

sidered in the literature, namely the Normal and Exponential distributions, across various

measures of goodness-of-fit.1

It is worth noting that the Double EMG distribution is appealing on theoretical grounds.

We show that the Double EMG distribution arises naturally in trade models with hetero-

geneous firms, along the lines of Melitz (2003) in which firms face supply and demand side

heterogeneity. In particular, when firms draw their productivity parameter from a (Double)

Pareto distribution (see Chaney (2008)) and simultaneously draw their demand parameter

from a Normal distribution (see Timoshenko (2015)), the resulting cross-sectional distribu-

tion of log-sales follows a Double EMG distribution.2

Third, we quantify partial trade elasticities using a structural trade model that features

firm heterogeneity and a Double EMG distribution. We find that there exists little variation

in model generated trade elasticities, despite the empirically observed heterogeneity in log-

export sales distributions. In fact, the quantified differences in the model generated partial

trade elasticities are negligibly small and effectively yield a single trade elasticity across all

destinations, as in the Krugman (1980) model of trade where all firms are identical and there

is no selection. This finding implies that the contribution of selection to changes in trade

flows as a result of changes in variable trade costs, known as the extensive margin of the

partial trade elasticity, is inconsequential (on the order of magnitude of 10−5 according to

1Note that when the distribution of log-sales follows a Normal distribution, the distribution of sales follows
a log-Normal distribution. Similarly, when the distribution of log-sales follows an Exponential distribution,
the distribution of sales follows a Pareto distribution. The two representations are isomorphic. Given
that we characterize properties of the log-export sales distributions, we adopt the Normal and Exponential
representation.

2More generally, the Double EMG distribution’s microfoundations can be traced to the literature on firm
size dynamics and power laws (see Gabaix (2009) for an extensive review). Reed and Jorgensen (2004)
and Toda (2014) prove that the (Double) EMG is the endogenous steady state distribution of a Brownian
motion that is subject to a Poisson process over stopping times (exits) and whose initial points are Normally
distributed.
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our results).

The insignificance of selection is driven by the abundance of small firms in the log-

export sales distribution. Our identification strategy for quantifying the trade elasticities

closely follows Bas et al.’s (2015) and relies on (i) using the entire shape of the empirical

distribution of log-export sales, in particular the left-tail of the distribution, to identify

a theoretical distribution of log-export sales and (ii) using information about the sales of a

marginal exporter to identify the market entry threshold. In our sample, the average smallest

exporter in a trade destination has approximately $160 in sales, which typically comprises

only 0.06% of the sales from the average exporter. The low sales of marginal exporters makes

their contribution to trade small. As a result, the adjustment in trade to changes in variable

trade costs is overwhelmingly driven by changes in sales of incumbent firms, which is known

as the intensive margin of the partial trade elasticity.

Fourth, we quantify the magnitude of the bias in measured trade elasticities arising from

omitting the small firms in the data. We refer to this phenomenon as truncation bias. To

quantify this truncation bias, we create a set of counterfactual data sets by applying a

truncation rule to our original data. Specifically, we drop all firm export sales records if

they fall below a specified threshold. We find that in the truncated samples, partial trade

elasticities no longer equals the intensive margin of the partial trade elasticity (as in Krugman

(1980)). Instead, the average partial trade elasticity increases by up to 14% and the standard

deviation across destinations increases from 10−4 to 1.33. Therefore the truncated sample

elasticity estimates exhibit much larger heterogeneity across country-pairs compared to the

full sample elasticity estimates.

The truncation bias in measuring partial trade elasticities is solely driven by assigning a

falsely greater role to firm entry and exit (i.e. the extensive margin) in overall trade. The

structural estimation of partial trade elasticities relies on the sales of the smallest exporter

to identify the size of entrants and exiters (the market entry threshold and, therefore, the

extensive margin). Because data truncation artificially increases the size of a marginal

exporter, truncated samples will overestimate the role of entry and exit in generating trade

flows and induce larger partial trade elasticities. Our results therefore suggest that when

the micro data are used to quantify partial trade elasticities, frequently used data sets that

feature sample truncation will necessarily overstate the role of selection.

Finally, we show that truncation bias in measuring partial trade elasticities leads to an

underestimation of the welfare gains from trade. To quantify the effect of truncation bias

on welfare gains, we perform a series of counterfactual experiments in a general equilibrium

setting. In the benchmark exercise, we calibrate model parameters to ensure the model’s

partial trade elasticity equals that from the full data sample. In a counterfactual exercise,
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we calibrate model parameters to match the partial trade elasticity that was estimated

from truncated data. We then compute welfare changes (measured as changes in aggregate

real income in the model) from declines in trade costs and compare these welfare changes

in the benchmark calibration and the counterfactual calibration. We find that a 0.3% to

14% overestimation of partial trade elasticities from truncation bias leads to a 1% to 9%

underestimation of the welfare gains from a 50% decline in trade costs.

The economic significance of these magnitudes is striking when the lower bound of 1%

is contrasted with the past decade of GDP growth in the U.S. of 2% per year, or the past

three decades of Brazilian GDP growth of 2.5% per year; or when the upper bound of 9%

is contrasted with the past two decades of Chinese GDP growth of 10% per year.3 The

implication is that a truncated sample leads to underestimated welfare gains to trade by

magnitudes that range from a typical GDP growth experience to a large economic boom.

The main results of this paper suggest that the welfare implications of structural trade

models along the lines of Melitz (2003) are sensitive to the existence of small firms. When

identifying trade elasticities from log-export sales distributions, the partial elasticity of trade

flows with respect to variable trade costs almost entirely reflects the increased export sales

of incumbent firms. The contribution of selection or firm turnover, through the extensive

margin of the partial trade elasticity, is approximately zero because it is identified by small-

est exporter whose export sales are merely 0.06% as large as that of an average exporter.

However, this result does not imply that the firm turnover is small. In fact, it can be quite

large. These results more simply show that the contribution of entrants’ export sales to trade

is small relative to incumbents’ export sales. Therefore, when data are truncated, the role

of the extensive margin of the partial trade elasticity can appear quite large exactly because

truncation increases the size of the observed marginal entrant.

Literature Review: This paper contributes to several literatures. First is the empirical

literature on firm size distributions. Axtell (2001) shows that, when measured in number of

workers, the right tail of the U.S. firm size distribution closely follows Zipf’s law. Studying the

French firm size distribution, di Giovanni, Levchenko, and Rancière (2011) provide further

evidence on the estimates of the tail parameter of a Power law distribution and show that

it lies close to one. Furthermore, while Cabral and Mata (2003) document a positively

skewed firm size distribution over number of employees in Portuguese manufacturing firms

and Bastos and Dias (2013) extend this result to total Portuguese exports, our work shows

that the asymmetric nature of the data is also pronounced in the distribution of export sales

by destination. In the Brazilian export data, the majority of destination-level exports are

3Average annual GDP growth data are taken from the World Development Indicators.
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positively skewed and the degree of (positive and negative) skewness varies across destination.

We demonstrate that a Double EMG distribution can match this feature of the data, while a

Normal distribution is symmetric and an Exponential distribution has a constant skewness

of 2.

In contrast, recent work has argued that sales distributions are not well characterized by

Zipf’s law. For example, Head, Mayer, and Thoenig (2014) show that a Normal distribution

provides a better fit to export sales data, primarily due to its superior ability to match

the left tail of export sales distributions. Furthermore, similar to this paper, Nigai (2017)

shows that a mixture distribution of a log-Normal and Pareto better fits aggregated sales

data. The Double EMG as a characterization of the firm size distribution, however, has

advantages over both the Normal and the mixture distribution. First, neither the Normal

nor the mixture distribution is capable of matching negative skewness that we document

in the data. Second, the Double EMG has explicit microfoundations, unlike a mixture

distribution, which is appealing on the grounds of theoretical consistency within the model.4

Third, we quantitatively assess the fit of the Double EMG distribution and find that the

data favors the Double EMG over either the log-Normal or Pareto.5

While this paper introduces the Double EMG to trade models, the Double EMG distri-

bution has also been used in various recent macroeconomic applications. Both Badel and

Huggett (2014) and Heathcote and Tsujiyama (2015) use the distribution to model idiosyn-

cratic earnings in incomplete markets models with taxation. The distribution helps capture

the skewness in log-earnings distributions, as the EMG fits the cross-sectional log-earnings

distribution better than a conventionally used Normal distribution. Toda and Walsh (2015)

use the Double EMG to model the distribution of consumption growth in the Consumer

Expenditure Survey and estimate consumption-based asset pricing models in the presence

of fat-tailed consumption growth.

Our quantitative results are consistent with recent work that finds a small contribution

of firm entry and exit to trade flows. In particular, Gopinath and Neiman (2014) find that

while the number of importing firms declined by 50% during the first year of the Argentine

crisis in the early 2000s, these exiting firms only accounted for less than 8% of the subsequent

fall in the value of exports. In contrast, while other work has found a large contribution of

entrants to trade flows, these studies cumulate flows over long time horizons of at least a

decade. For example, Goldberg, Khandelwal, Pavcnik, and Topalova (2009) find that new

4A further point of departure from Nigai (2017) is a focus on measuring trade elasticities. Relative to that
paper and Head et al. (2014) as well, this paper focuses on the rich heterogeneity of sales distributions
across destination-years.

5 While this paper focuses on exogenous distributions governing firm-level heterogeneity, Mrázová, Neary,
and Parenti (2016) focus on how preferences influence sales distributions.
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HS6 products, which entered between 1987 and 2000, contributed to 65% of the increase

in the volume of imports during India’s liberalization between 1987 and 2000. Similarly,

Lincoln, McCallum, and Siemer (2017) show that firms who became new exporters during

the 13 years between 1987 and 2002 accounted for 54% of the manufacturing export value in

2002. When expressed on a per year basis, these numbers are similar to those in Gopinath

and Neiman (2014).

Our paper is also related to work that shows that structural estimation of the partial trade

elasticity is a useful alternative to the reduced form gravity approach pioneered by Tinbergen

(1962).6 A key assumption underlying typical gravity equation estimation is that partial

trade elasticities are common across bilateral country-pairs. Melitz and Redding (2015) have

shown that this assumption is violated in trade models that feature heterogeneous firms and

selection into exporting, but do not assume a Pareto-distributed productivity. Helpman,

Melitz, and Rubinstein (2008) have further shown that omitting the effect of selection on

the partial trade elasticity leads to biased gravity-based estimates of the elasticity. In light

of these critiques, our structural method specifically takes into account the effect of selection

on the partial trade elasticity and uses disaggregated trade data to back out the underlying

distribution of export sales.

Outline: The rest of the paper is organized as follows. Section 2 establishes a set of stylized

facts about the properties of log-sales distributions across markets. Section 3 constructs

the Double Exponentially Modified Gaussian distribution and characterizes its properties.

Section 4 fits theoretical distributions to empirical export sales distributions and evaluates

goodness of fit. Section 5 demonstrates how the trade elasticity depends on distributional

assumptions and defines a theory-based strategy for estimating the trade elasticity using

micro-level export data. Section 6 quantifies trade elasticities, documents the sample trun-

cation bias in the estimates of trade elasticities, and explores implications of the sample

truncation bias for measuring the welfare gains from trade. Section 7 concludes. Proofs to

all propositions are included in Appendix A, and Appendix B contains a full description

of the heterogeneous-firm trade model that we employ. Appendix C shows that our results

hold for an alternative export sales data set; shows that our results are robust to sample

selection, and, finally, shows that our results are robust to industry heterogeneity.

6Head and Mayer (2014) provide a comprehensive summary of the corresponding literature, review various
techniques for estimating the gravity equation, and discuss empirical challenges in using the reduced form
approaches to estimate trade elasticities.
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2 Empirical Facts

In this section we present new stylized facts that describe log-sales distributions across

export destinations and discuss how these facts present a puzzle for standard distributional

assumptions made in trade models.

The data come from the Brazilian customs declarations collected by SECEX (Secretaria

de Comercio Exterior).7 The data cover the period between 1990 and 2001, and include

the value of export sales at the firm-product-destination-year level. A product is defined

at a six-digit Harmonized Tariff System (HS) level. We focus on exports in manufacturing

products.8 To explore properties of the distribution of export sales across destinations and

years, we aggregate the data to the firm-destination-year level and focus on destination-year

observations where at least 100 firms export.9 We define an observation to be an entire

distribution of log-sales for a given destination in a given year.10 The final sample consists

of 847 destination-year distributions of log-sales.

Table 1 summarizes properties of log-sales distributions across destination-year observa-

tions. Each row presents a statistic and, because there is variation in these statistics across

destination-year observations, each column reports a statistic’s average value, median value,

standard deviation, minimum value, and maximum value.

Fact 1 Across destinations, export sales distributions are highly asymmetric.

To describe the symmetry of log-sales distributions, we consider three different measures

of skewness. The first is the standardized third moment measure of skewness. The second

is nonparametric skew, which is defined as the difference between the mean and the median

of a distribution divided by its standard deviation. The third is Kelly skewness defined as

Kelly skewness =
(P90− P50)− (P50− P10)

P90− P10
, (1)

where P10, P50, and P90 are the 10th, the 50th and the 90th percentiles of a distribution.11

7See Molinaz and Muendler (2013) for a detailed description of the data set. These data have also been
recently used by Flach (2016) and Flach and Janeba (Forthcoming).

8Manufacturing HS codes lie in the range between 10.00.00 and 97.00.00. In an average year exports in
manufacturing products account for 90.82% of total exports.

9To be consistent with the literature, we make two decisions on how to use the data. First, we follow the vast
majority of research on measuring theoretical trade elasticities by aggregating the data to destination-year,
as opposed to industry-destination-year (see Head et al. (2014), Bas et al. (2015), Nigai (2017)). Second,
we follow Fernandes, Klenow, Meleshchuk, Pierola, and Rodŕıguez-Clare (2015) in requiring at least 100
firms be present within a destination-year observation.

10In Appendix C, we consider an alternative definition of an observation that controls for the industrial
composition of sales within destinations.

11In recent research on the asymmetry of earnings growth over the business cycle using administrative data

8



Table 1 shows that the majority of log-sales distributions are asymmetric. The average

of each skewness measure across destination-year observations is positive and the averages

are statistically different from zero with a maximium p-value of 0.0003 across measures.

Among the 847 destination-year observations, 54% have positive skewness, 71% have positive

nonparametric skew, and 75% have positive Kelly skewness.

We formally confirm the asymmetry in log-sales distributions through a standard test of

Normality, as described in D’Agostino et al. (1990). Based on skewness alone, the test rejects

normality in 31% of destination-year observations at the 10-percent significance level, 24%

of observations at the 5-percent significance level, and 16% of observations at the 1-percent

significance level. Based on both skewness and kurtosis, the test rejects normality in 42%

of observations at the 10-percent significance level, 32% of observations at the 5-percent

significance level, and 20% of observations at the 1-percent significance level.

Fact 2 Log-sales distributions exhibit a high degree of variation in the fatness of right and

left tails.

We focus on two measures to characterize the tail properties of log-sales distributions

across destination-year observations. The first measure is kurtosis, which is the fourth stan-

dardized moment of a distribution. Kurtosis measures how much mass is located in the tails

of a distribution relative to the mean. The kurtosis of a Normal distribution is constant

and equals 3. A leptokurtic distribution has higher kurtosis than a Normal distribution

and therefore exhibits fatter tails than a Normal. As can be seen from Panel A in Table 1,

the average kurtosis across destination-year observations in the data is 3.17. Therefore, on

average, the log-sales distributions are more fat-tailed than a Normal.

Similar findings hold for a percentile based measure of kurtosis defined as

Percentile coefficent of kurtosis =
(P75− P25)/2

P90− P10
,

where P25 and P75 are the 25th and 75th percentiles of a distribution. For a Normal

distribution the percentile coefficient of kurtosis is equal to 0.26. A smaller value of the

coefficient corresponds to a distribution that is more kurtotic than a Normal. As can be

seen from Panel B of Table 1, log-sales distributions exhibit substantial variation in kurtosis

around the sample mean of 0.26 with a majority of observations being more kurtotic than a

Normal.

from the Social Security Administration, Guvenen, Ozkan, and Song (2014) use Kelly skewness to avoid the
sensitivity of standardized moments to extreme values. Given that our data set contains fewer observations,
we utilize Kelly skewness for robustness - to better ensure that our results are not generated by a small
number of extreme value observations.
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While kurtosis is informative about the overall fatness across a distribution’s tails (relative

to a Normal distribution), it does not provide any information about how fat tails are relative

to each other. In order to characterize fatness in the left tail relative to fatness in the right

tail, we follow Gabaix and Ibragimov (2011) in estimating the right and left tail index

parameters for each log-sales distribution across destination-years. Tail index parameters

are estimated as the coefficient β from the following regression:

log (Ranki − 0.5) = α + β log(Salesi) + εi,

where i indexes firms within an export destination, Salesi is firm i’s export sales, and Ranki

is firm i’s sales rank out of all firms exporting to a particular destination. We run this

regression on a sample of firms in the top or bottom 5%, 10% and 15% of a distribution for

each destination-year observation. The smaller is the estimate of the coefficient, the fatter

is the corresponding tail of the distribution.

Results are summarized in Panel C of Table 1, which report information about the

absolute value of the coefficient β as estimated across destination-year observations. These

results indicate that the log-sales distributions exhibit substantial fatness in both the left

and right tails. Depending on the sample, the average value of the tail index coefficient varies

between 1.01 and 1.42. Notably, the left tail index exhibits more fatness than the right tail

index. For example, the sample average of the left tail index for the bottom 15% of firms is

1.01, while for the top 15% the average is 1.08.

Furthermore, we find that both tails are simultaneously fat in a majority of cases. Figure 1

provides a scatter plot of the tail index estimates for the top and bottom 5% of firms in a

distribution. Each dot in the Figure corresponds to an estimate of the right tail index (x-

axis) and the left tail index (y-axis) for a given destination-year observation. Observe that

both tail indexes have values below 2 for a majority of distributions. Our finding that the

right tail of the log-sales distribution tends to be fat is consistent with previous research (see

Axtell (2001), di Giovanni and Levchenko (2013)). However, our finding that the left tail of

log-sales distributions exhibits substantial fatness is, to the best of the authors’ knowledge,

new to the trade literature.

Role of Small Firms: The novel properties of the log-sales export distributions which we

document are primarily driven by the presence of small exporters across destinations. The

existence of small firms in the Brazilian export data is a special feature of the data set,

insofar as Brazilian customs keep a careful record of all export transactions, including the

smallest exporters. Panel D of Table 1 reports that the size of an average exporter is about

62 thousand times larger than the size of the smallest exporter. The abundance of small
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exporters across destinations is the main driver of the negative skewness and left-tail fatness

of log-export sales distributions that we observe in the data.

To clearly demonstrate the role of small firms in shaping the novel features of the log-

export sales distributions, we create an artificial truncated data set. We take the original

log-sales data and drop all firm-destination-year observations with a value of exports below

$5,000. Table 2 replicates the results of Table 1 using truncated data. Observe that even

a modest truncation point significantly reduces the gap between the size of the smallest

and an average firm in a distribution. Panel D of Table 2 reports that, in the truncated

sample, the average firm is only about 160 times larger than the smallest firm. As a result,

when a sample omits the smallest exporters, the log-export sales distributions become over-

whelmingly positively skewed with thinner left tails. The skewness of an average distribution

increases from 0.03 to 0.59. Further, the tail parameter estimate of the sales of bottom 5%

of firms increase from 1.21 to 8.61. Notice, that the values of right-tail parameters are not

significantly effected by the sample truncation.12

Relationship to Parametric Distributions: Facts 1 and 2, above, contradict key prop-

erties of the standard theoretical distributions employed by new trade models. In particular,

the Normal and an Exponential distributions (commonly referred to as the log Normal and

Pareto distributions when considering levels of exports instead of log-exports) will not fit the

empirical log-export sales distributions across several dimensions. First, the Normal distri-

bution is symmetric, and therefore all considered skewness measures equal zero for a Normal.

Second, the Exponential distribution has skewness of 2, nonparametric skewness of 0.31 and

Kelly skewness of 0.47. Across each of the three measures, the Exponential distribution’s

skewness does not depend on the distribution’s parameter values. As shown in Table 1,

the majority of log-sales export distributions however are not symmetric, do not share the

same level of skewness, and are less skewed than an Exponential distribution. Therefore,

according to all three measures of skewness, neither the Normal nor the Exponential distribu-

tions can characterize the export sales data well. Furthermore, excess kurtosis of log-export

sales distributions immediately imply that a Normal distribution poorly characterizes the

log-sales distributions. The log-sales distributions would also be poorly approximated by an

Exponential due to the presence of a fat left tail.

12We have also computed results for thresholds of $50,000, $100,000, and $250,000. We find that as the value
of the truncation point increases, the distributions become more positively skewed and exhibit thiner left
tails. These results are available upon request.
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3 The Double Exponentially Modified Gaussian Dis-

tribution

The Double Exponentially Modified Gaussian (Double EMG) distribution is defined as a

convolution of a Normal distribution and a Double Exponential distribution. As a result,

one of the key properties of the distribution is its flexible behavior in the right and left tails.

Hence, the Double EMG distribution is well suited to generate empirical regularities in

the log-sales export data as documented in Section 2. Furthermore, the distribution arises

naturally in models that feature both Double Pareto and log-Normal shocks that affect

firms’ profit. In Section 3.1 we derive several key properties characterizing the distribution

including its behavior in the right and left tails.

3.1 Characterization of the Double EMG

Consider a random variable z defined as z = x + y, where x and y are two independent

random variables. Assume x:N (µ, σ2) is Normally distributed, and y:DE(λL, λR), where

DE denotes the Double Exponential distribution.13 In this case, random variable z is a

convolution of a Normal and a Double Exponential random variables and is said to follow

a Double Exponentially Modified Gaussian (Double EMG) distribution with parameters

(µ, σ, λL, λR). Proposition 1, below, formally characterizes the Double EMG distribution

with its cumulative distribution function. Proposition 2 further characterizes the the Double

EMG distribution’s limiting properties.14

Proposition 1 Let x and y be independent random variables such that x ∼ N (µ, σ2), y ∼
DE(λL, λR) and parameters satisfy µ ∈ R, σ > 0, and λL, λR > 0. The random variable

z ≡ x+ y has the cumulative distribution function G : R→ [0, 1] given by:

G(z) = Φ

(
z − µ
σ

)
− λL
λL + λR

e−λR(z−µ)+σ2

2
λ2RΦ

(
z − µ
σ
− λRσ

)

+
λR

λL + λR
eλL(z−µ)+σ2

2
λ2LΦ

(
−z − µ

σ
− λLσ

)
.

Proposition 2 (Limiting Results) Let z be a Double Exponentially Modified Gaussian dis-

tributed random variable with parameters (µ, σ, λL, λR). The random variable z is (i) an

13The Double Exponential distribution is also referred to as an Asymmetric Laplace distribution. The
cumulative distribution function is given by GDE(y) = λR

λL+λR
eλLy if y < 0, and GDE(y) = λR

λL+λR
−

λL

λL+λR

(
1− e−λRy

)
if y ≥ 0.

14The proofs to all propositions are included in Appendix A.
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Exponentially Modified Gaussian distributed random variable as λL goes to infinity, (ii) an

Exponentially Modified Gaussian distributed random variable with a Normal right tail and

Exponential left tail as λR goes to infinity, (iii) a Double Exponentially distributed random

variable as σ goes to zero, where if µ 6= 0 then this limiting distribution is a shifted Double

Exponential distribution, and (iv) an Exponentially distributed random variable as σ goes to

zero and λL goes to infinity.

Recall that as the variance of a distribution becomes arbitrarily small, the corresponding

distribution has a point mass. Proposition 2, therefore, implies that the Double EMG dis-

tribution generalizes both the Normal and the Exponential distributions. When the Double

Exponential component has zero variance (i.e. (λ−1
L + λ−1

R ) → 0), the Double EMG distri-

bution is transformed into a Normal distribution. Similarly, when the Normal component

has zero variance together with λL → +∞, the Double EMG distribution converged to

Exponential.

Proposition 3 below shows that, as a consequence of being a convolution of a Normal

and a Double Exponential random variable, the Double EMG distribution can generate

both positive and negative skewness as well as fatness in both the left and right tails of the

distribution.

Proposition 3 If z is a Double Exponentially Modified Gaussian distributed random vari-

able on (−∞,+∞) then the skewness of z is given by

skew(z) = 2

(
1

σ3λ3
R

− 1

σ3λ3
L

)(
1 +

1

σ2λ2
R

+
1

σ2λ2
L

)− 3
2

.

Furthermore, the sign of skew(z) is determined by the relative size of the tail parameters:

(i) skew(z) > 0 if λL > λR, (ii) skew(z) = 0 if λL = λR, and (iii) skew(z) < 0 if λL < λR.

The skewness of the Double EMG distribution exhibits two stark properties. First, the

distribution has a potential to generate both positive and negative skewness in the range

between -2 and 2. Notably, the sign of the skewness depends on the relative fatness of the

right and left tails of the distribution as measured by parameters λR and λL. Second, the

distribution can be symmetric (when λL = λR), yet exhibit substantial deviations from a

Normal in the tails when the values for λR and λL are small.

Figure 2 provides an example of two probability density functions for two distributions

with zero mean and the unit variance. The solid line depicts a probability density function

for a symmetric Double EMG distribution (although the tails need not be symmetric), and

the dashed line depicts a probability density function for a Normal distribution. Notice

13



that relative to a Normal, the Double EMG, while preserving the unimodal property of the

distribution, has more mass in the right and left tails. This is a key distinction between the

two distributions which helps the Double EMG to flexibly match features of log-export sales

distributions.

Hence, the Double EMG is the most flexible distribution among those considered in the

trade literature and has the potential to match all of the new stylized facts documented in

Section 2. In the next section we describe our strategy for fitting the Double EMG distribu-

tion to the data and compare the distribution’s fit to that of the Normal and Exponential.

4 Fitting to Empirical Distributions

In this section we describe our strategy for estimating distributional parameters using export

sales data from Brazil. Then, equipped with estimated parameters for each destination-year

log-sales distribution, we compare the fit of the Double Exponentially Modified Gaussian,

Normal and Exponential distributions. We show that the Double Exponentially Modified

Gaussian distribution has a superior fit to the data when compared to the Normal and

Exponential distributions. Lastly, we document that there is large heterogeneity in esti-

mated parameters and show how the estimates reflect the variation in data moments across

destination-year observations.

4.1 Parameter Estimation

We choose distribution parameters so that the percentiles of the theoretical log-sales distri-

bution match the percentiles of the empirical log-sales distribution. Specifically, we recover

parameters of a theoretical distribution from non-linear quantile regressions that we imple-

ment using a generalized method of moments procedure. Our procedure is a generalization

of Head, Mayer, and Thoenig (2014), who use quantile regressions to estimate parameters of

the Pareto and a log-Normal distributions, both of which have linear quantile functions and

therefore parameters can be estimated using linear regression. In contrast, the Double EMG

distribution does not admit a linear quantile function (as can be inferred from Proposition 1)

and therefore we estimate the parameters of the Double EMG distribution using a General-

ized Method of Moments (GMM) procedure. For the Normal and Exponential distributions,

our procedure can recover the parameter estimates implied by linear regression.

Denote by nq the number of sales quantiles. Let (log r)di denote the i-th quantile of the

empirical log-sales distribution and F d
i denote the corresponding value of the empirical CDF
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at the i-th quantile.15 By comparison, let (log r)i(Θ) denote the i-th quantile of the theo-

retical cumulative distribution function with parameters Θ and let F [(log r)i|Θ] denote the

corresponding value of the theoretical cumulative distribution function at the i-th quantile.

For an arbitrary distribution over log-sales, we can recover the theoretical quantiles by

inverting the theoretical cumulative distribution function. Generally, the inverse can be com-

puted numerically for each value of the empirical cumulative distribution function, {F d
i }

nq
i=1,

by using a root-finding procedure to find the value of log r such that F d
i = F (log r|Θ) up to

the desired tolerance of error.

For the Double EMG distribution, the parameter vector is Θ = (µ, σ, λL, λR) such that

log r ∼ F (log r|µ, σ, λL, λR). However, the inverse of the Double EMG distribution does

not admit a closed form expression. Therefore, the inverse of the cumulative distribution

function must be computed numerically.

By a change of variables, log-sales are Normally distributed if sales are log-Normally dis-

tributed. Similarly, log-sales are Exponentially distributed if sales are distributed according

to a Pareto. Both the Normal and Exponential distributions do, in fact, admit closed form

expressions for the inverted cumulative distribution functions, of the forms:

(log r)Ni (ΘN) = µN + σNΦ−1(F d
i )

(log r)Ei (ΘE) = log(
¯
r) + (1/λE) log(1− F d

i ),

where Φ(·) is the CDF of a standard normal, and ΘN = (µN , σN) and ΘE = (log(
¯
r), λE)

denote the parameter vectors for the Normal and Exponential distributions, respectively.

Finally, for a given theoretical distribution F (·|Θ), we choose parameters Θ that minimize

the sum of the squared errors between empirical and theoretical quantiles:

min
Θ

nq∑
i=1

[
(log r)di − (log r)i(Θ)

]2
. (2)

In estimation, we use the 1st through 99th percentiles of the empirical CDF to estimate pa-

rameters. In practice, this choice eases computational burden compared to using each data

point, without significantly changing the parameter estimates we recover. Furthermore, note

that choosing parameters to minimize the sum of squared residuals is equivalent to Head

et al.’s (2014) method of recovering parameters from quantile regressions. Our procedure

recovers approximately the same parameter estimates for the Normal and Exponential dis-

tributions as those authors’ method.

15Following Head, Mayer, and Thoenig (2014), we define the empirical CDF over log-sales as F di = (i −
0.3)/(nq + 0.4).
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4.2 Double EMG Fit to Empirical Distributions

Having estimated distribution parameters, we now evaluate the fit of each distribution to

the log-sales distributions across destination-years.

Result 1 According to multiple goodness of fit statistics, the Double Exponentially Modified

Gaussian distribution fits empirical log export sales distributions better than the Normal and

Exponential distributions.

We first argue that the Double EMG distribution fits the data better than either the

Normal or Exponential distributions by examining fitted distribution functions versus their

empirical counterparts. We observe that the Double EMG distribution deviates from the data

less than the Normal distribution, especially at the lower and upper percentiles. Panel A of

Figure 3 compares the left tail across the empirical, Double EMG and Normal distributions.

We observe that the Double EMG distribution provides a superior fit than the Normal in

the left tail. Panel B of Figure 3 compares the right tail across distributions. We observe

that the Double EMG distribution barely deviates from the empirical distribution up to the

99th percentile. In both tails, the Normal distribution is too thin relative to the data.

To better formalize the suggestive evidence we have put forth thus far, we consider three

primary measures of the goodness of fit. Figure 4 presents goodness of fit statistics for

each of the distributions under consideration. Specifically, the Figure 4 presents scatter

plots of goodness of fit measures from the Exponential distribution (top row) or the Normal

distribution (middle row), plotted against goodness of fit measures for the Double EMG

distribution.

The first measure is the sum of squared errors (reported in the first column), which is

given by the objective criterion from the estimation procedure given in equation (2) when

evaluated at the error-minimizing parameters. Panel A and Panel D of Figure 4 show

that errors are larger for the Normal and Exponential distributions than the Double EMG

distribution. This is unsurprising, since the Double EMG distribution nests both the Normal

and Exponential distributions as limiting cases (see Proposition 2). More interesting is the

fact that both Panels A and D show that the errors are much larger for the Normal and

Exponential distributions. However, the magnitude of the difference in errors is smaller for

the Normal than the Exponential distribution.

The second measure is the Mean Absolute Error, which is given by:

MAE(Θ) ≡ 1

nq

nq∑
i=1

∣∣∣(log r)di − (log r)i(Θ)
∣∣∣.
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The Mean Absolute Error measures the average deviation of the theoretical distribution

from the empirical in either direction, but unlike the sum of squared errors does not more

harshly penalize infrequent but large deviations. The second column (Panels B and E) of

Figure 4 shows that errors are larger for the Normal and Exponential distributions than the

EMG distribution. Therefore, the Mean Absolute Error reinforces that the Double EMG

distribution has a superior fit, and that the difference in errors across the three distributions

are not generated by a small number of large deviations from empirical observations.

The third measure is the Anderson-Darling statistic, which is given by:

AD(Θ) ≡ nq

nq∑
i=1

[
F d
i − F ((log r)i|Θ)

]2
F [(log r)i|Θ] [1− F ((log r)i|Θ)]

f [(log r)i|Θ] ,

where f [(log r)i|Θ] is the theoretical probability density function.16 Compared to our two

other goodness of fit measures, the Anderson-Darling statistic places greater weight on ob-

servations in the tails of the distributions. To see this, consider the denominator within the

integral. As F (log r|Θ) approaches one or zero, [F (log r|Θ)(1 − F (log r|Θ))]−1 approaches

infinity. Therefore, the denominator is smallest for values of log r for which F (log r|Θ) is

interior to [0, 1]. The third column of Figure 4 shows that the Anderson-Darling statistics

are larger for the Normal and Exponential distributions than the Double EMG distribution.

Therefore, the deviations of the Normal and Exponential distributions from the data can

be, at least partially, attributed to a failure to match tail observations. This is particularly

true for the Exponential distribution, which by construction cannot match the left tail of

the sales distributions.

Taken together, these three measures show that the Double EMG distribution consis-

tently fits the log-sales distributions better across destination-year observations, and that

the Normal and Exponential distributions consistently fit the data worse in the tails of the

distribution.

5 Theoretical Trade Elasticity

In this section, we employ the workhorse heterogeneous-firm trade model, along the lines

of Melitz (2003) and Chaney (2008), to illustrate a relationship between export sales distri-

butions and the partial trade elasticity. We demonstrate that variation in the partial trade

elasticity across destinations arises from the variation in the extensive margin of firm entry

16We compute this the density function as a numerical approximation to the derivative of the cumulative
distribution function: f(log r|Θ) ≡ (F (log r + ∆|Θ)− F (log r −∆|Θ))/2∆. The constant ∆ > 0 is chosen
as a tenth of the maximum distance between successive empirical quantiles.
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and exit. We further show that the extensive margin elasticity can be identified from prop-

erties of empirical export sales distributions and, finally, develop an estimation approach for

quantifying the magnitude of the extensive margin elasticity.

5.1 Economic Environment

There are N countries. We will denote by i the origin country and by j a destination country.

Each country j is populated by Lj identical consumers with preferences given by a constant

elasticity of substitution utility function given by

Uj =

(
N∑
i=1

∫
ω∈Ωij

(
eθij(ω)

) 1
ε cij(ω)

ε−1
ε dω

) ε
ε−1

,

where Ωij is the set of varieties consumed in country j originating from country i, cij(ω)

is the consumption of variety ω ∈ Ωij, ε is the elasticity of substitution, and θij(ω) is the

demand parameter for variety ω ∈ Ωij.
17

Each consumer owns a share of domestic firms and is endowed with one unit of labor

that is inelastically supplied to the market. Cost minimization yields optimal demand for

variety ω ∈ Ωij given by

cij(ω) = eθij(ω)pij(ω)−εYjP
ε−1
j , (3)

where pij(ω) is the price of variety ω ∈ Ωij, Yj is income in country j and Pj is the aggregate

price index in country j given by P 1−ε
j =

∑N
i=1

∫
ω∈Ωij

eθij(ω)pij(ω)1−εdω.

5.2 Supply

As in Chaney (2008), each country is endowed with the exogenous mass Ji of prospective

entrants. Upon entry, a firm is endowed with an idiosyncratic labor productivity level ϕ and

a destination-specific demand parameter θj. Productivity and destination-specific demand

parameters are drawn from separate independent distributions. Firms face fixed fij and

variable τij costs of selling from country i to country j denominated in terms of units of

labor.

Once productivity and demand are realized, firms compete in a monopolistically com-

petitive environment. Firms maximize profits subject to the consumer demand (14) yielding

17Bernard, Redding, and Schott (2010) interpret θij(ω) as variations in consumer tastes or relative demand
across different varieties. In Timoshenko (2015) θij(ω) represents product demand that firms need to learn
over time through market participation.
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the optimal price given by

pij(ϕ) =
ε

ε− 1

τijwi
ϕ

,

where wi is the wage in country i. The corresponding firm’s optimal revenues and profits

are given by

rij(θij, ϕ) =

(
ε− 1

ε

)ε−1

(τijwi)
1−ε YjP

ε−1
j eθijϕε−1, (4)

πij(θij, ϕ) =
rij(θij, ϕ)

ε
− wifij. (5)

5.3 Profitability and Sales

Notice from equations (4) and (5) that a firm’s profitability in market j depends on both

a firm’s productivity ϕ and a demand parameter θj in a multiplicative way. Hence a low

productivity firm can generate positive profits if the demand for its product is high, and

vise versa. Thus, selection into a market occurs based on a firm’s profitability, and not

productivity or demand alone. Denote by zij the firm’s payoff relevant state variable given

by

zij = θij + log
(
ϕε−1

)
. (6)

We will refer to zij as a firm’s profitability in market j.18 Given zij, we can rewrite the

firm’s optimal revenue and profit as a function of profitability zij as

rij(zij) =

(
ε− 1

ε

)ε−1

(τijwi)
1−ε YjP

ε−1
j ezij . (7)

Profitability zij is a generalized representation of firm-level heterogeneity in the con-

text of the new trade theories. For example, in a canonical Melitz (2003) environment, the

underlying source of heterogeneity in profitability arises solely from heterogeneity in labor

productivity across firms, ϕ. Chaney (2008) further assumes that firm-level labor produc-

tivity ϕ is drawn from a Pareto distribution with shape parameter ξ. In this case, ezij

equals ϕε−1 and, by a change of variables, zij follows an Exponential distribution with shape

parameter λ = ξ/(ε− 1).

18Following Foster, Haltiwanger, and Syverson (2008) and Bernard, Redding, and Schott (2010), profitability
refers to firm-level shocks that may be the outcome of not only productivity differences but also differences
in product demand.
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In contrast to Chaney (2008), more recent work by Bas, Mayer, and Thoenig (2015)

and Fernandes, Klenow, Meleshchuk, Pierola, and Rodŕıguez-Clare (2015) assumes that the

underlying labor productivity ϕ is drawn from a log-Normal distribution, logN (m, υ2). In

this case, ezij equals ϕε−1, and zij follows a Normal distribution, N (µ, σ2) where µ = m(ε−1)

and σ2 = υ2(ε− 1)2.

Generalizing both sets of distributional assumptions, our framework assumes that there

are two separate sources of heterogeneity in firm-level profitability. Heterogeneity arises

from firm-level labor productivity ϕ drawn from a Double Pareto distribution with a shape

parameter ξ, and firm-level product demand eθij, where θij is drawn from a Normal dis-

tribution N (m, υ2), so that ezij equals eθijϕε−1.19 In this case, a firm’s profitability draw,

zij = θij + log (ϕε−1), is the sum of a Normal and a Double Exponential random variable.

Hence, zij is a Double EMG distributed random variable with parameters (µ, σ, λL, λR),

where µ = m, σ2 = υ2(ε− 1)2, λL = ξL/(ε− 1) and λR = ξR/(ε− 1).

In the context of the aforementioned firm-level learning literature, equation (7) is a gen-

eral representation of sales from country i’s firms to country j. While variation in profitability

across firms may arise from differences in firm-specific labor productivity, destination-specific

demand shocks or some combination of both, equation (7) shows that only the cumulative

effect, summarized by the profitability draw zij, determines the level of sales.

5.4 Aggregation

The aggregate trade flow from country i to country j is defined as

Xij = Mij

∫ +∞

z∗ij

rij(z)
gij(z)

1−Gij(z)
dz, (8)

where Mij is the mass of firms exporting from country i to j, and z∗ij is the profitability entry

threshold determined by the zero-profit condition. The partial elasticity of trade with respect

to variable trade costs is defined as the percent-change in the aggregate trade flows between

i and j as a result of a percent-change in variable trade costs τij and can be expressed as

∂ logXij

∂ log τij
= (1− ε)︸ ︷︷ ︸

level of the
partial trade elasticity

( 1︸︷︷︸
intensive margin

contribution

+ γij︸︷︷︸
extensive margin

contribution

), (9)

19In order to be consistent with standard trade models, assume that there is no idiosyncratic or aggregate
uncertainty after firms enter the market, firms always observe their product demand, and that the product
demand does not vary over time (see Appendix B).
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where γij is given by

γij ≡
gij(z

∗
ij)

(1−Gij(z∗ij))
· ez

∗
ij

Eij(ez|z > z∗ij)
. (10)

Functions gij(z) and Gij(z) denote the probability density function and cumulative distribu-

tion function over firms’ profitability respectively; Eij(·|z > z∗ij) is a conditional expectation

over profitability.20

A conventional way to write equation (9) is ∂ logXij/∂ log τij = (1− ε)+(1− ε)γij, where

(1 − ε) is the intensive margin, and (1 − ε)γij is the extensive margin of the partial trade

elasticity.21 The advantage of the representation in equation (9) is that it highlights the

distinct roles for the elasticity of substitution (ε) and the parameter governing the extensive

margin elasticity (γij) in determining the partial trade elasticity.22 As can be seen from

equation (9), ε governs the overall level of the trade elasticity, the contribution of the intensive

margin to that level is always unity, and the contribution of the extensive margin is governed

by γij. Hence, every dollar of new trade can be decomposed into an intensive and extensive

margin adjustment in the proportion of 1 to γij, which is notably independent from ε.

Equations (9) and (10) illustrate the important role that micro-level firm heterogeneity

plays in the aggregate measures of partial trade elasticity. From equation (9), the main source

of variation in the partial trade elasticity across origin-destination country pairs arises from

variation in the extensive margin elasticity, γij.
23 In turn, equation (10) demonstrates that

the extensive margin elasticity is solely determined by the shape of the log-sales distributions

summarized by the probability density and the cumulative distribution functions, gij(·) and

Gij(·), respectively, and the entry profitability threshold, z∗ij. We describe the estimation

method for γij in the next subsection.24

20The partial trade elasticity is derived in Appendix B.
21Chaney (2008) first suggested this decomposition in conjunction with a Pareto distribution. With Pareto

distributed zij , equation (10) simplifies to γij = ξ/(ε − 1) − 1 and ξ is the Pareto tail parameter. Sub-
stituting this expression for γij yields Chaney’s (2008) familiar formula for the partial trade elasticity:
∂ logXij/∂ log τij = −ξ.

22Melitz and Redding (2015) provide a representation of the partial trade elasticity consistent with equation
(9).

23Variation in the level of the partial trade elasticity can, in principle, arise from the elasticity of substitu-
tion being destination specific. Following the vast majority of the literature we abstract away from this
generalization and leave it for future research.

24In our generalization, notice that the partial trade elasticity is origin-destination specific due to the prof-
itability entry thresholds and the profitability distributions being origin-destination specific. This is in
contrast to a more restrictive assumption of a constant partial trade elasticity in Arkolakis et al.’s (2012)
framework. A constant partial trade elasticity requires the elasticity to be independent of the endogenous
profitability entry threshold and the profitability distribution not be destination specific. As a consequence,
the most common gravity estimation approach will uncover only a sample average of origin-destination
specific partial trade elasticities, which in fact may vary due to origin-destination specific distributions.
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5.5 Estimation Method

Equation (10) highlights that for a general distributional assumption, the extensive margin

contribution to the partial elasticity of trade with respect to variable trade costs, γij, is

intimately connected to the size of a marginal exporter as captured by the profitability

entry threshold, z∗ij. A model-consistent estimation method therefore must rely on using

information about the smallest exporters to identify the extensive margin elasticity, γij.

To compute extensive margin elasticities in equation (10) we proceed by, first, estimating

the origin-destination specific distributions of firm profitability, Gij(.) and, second, using

estimated parameters of the distributions to recover the profitability entry thresholds, z∗ij.

In the absence of selection into exporting, parameters of the distribution Gij(·) can be

recovered from micro-data on log-sales distributions by applying the estimation procedure

in Section 4.1. From equation (7), we can write log-sales, log(rij(zij)), as

log(rij(zij)) = log (Cij) + zij, (11)

where Cij =
(
ε−1
ε

)ε−1
(τijwi)

1−ε YjP
ε−1
j . In this case, equation (11) highlights a one-to-

one mapping between the distribution of log-sales and the distribution of the underlying

profitability shocks. The two distributions are equal up to a scale parameter (Cij). Hence,

parameters of the firms’ profitability distribution, Gij(z), can be recovered by fitting that

distribution to the empirical distribution of log-sales.

However, this method for recovering Gij(z) is not directly applicable to the Melitz (2003)

model that features selection into exporting. With selection, equation (11) only holds when

zij > z∗ij or equivalently when log(rij) > log(r∗ij). Hence, the observed distribution of export

sales follows a truncated profitability distribution given by [Gij(log(r))−Gij(log(r∗ij))]/[1−
Gij(log(r∗ij))]. Therefore, to obtain model-consistent estimates of trade elasticities, we amend

the estimation procedure developed in Section 4.1 to incorporate truncation into the esti-

mation procedure. Specifically, we recover parameters of the distribution Gij(·) by fitting a

truncated density of the firms’ profitability distribution to the micro-data on log-sales dis-

tributions. To compute the truncated distribution, we take the truncation point, log(r∗ij), as

given by the value of the zeroth percentile of the corresponding log-export sales distribution.

Using information about the size of the smallest exporter follows an estimation methodology

developed by Bas, Mayer, and Thoenig (2015), which we further employ to recover prof-

itability thresholds z∗ij. Namely, given the estimated origin-destination specific distribution

parameters we recover the threshold z∗ij from the average-to-minimum ratio of a sales distri-

This is also a key point in Melitz and Redding (2015).

22



bution.25 From equation (7), we can express the theoretical average-to-minimum ratio as a

function of z∗ij alone:

Eij(rij(zij)|zij > z∗ij)

rij(z∗ij)
=

Eij(e
zij |zij > z∗ij)

ez
∗
ij

. (12)

Subsequently, we compute the value of z∗ij for which expression (12) equals the empirical

average-to-minimum ratio.26

Our approach slightly differs from Bas, Mayer, and Thoenig (2015) in that it does not

require any knowledge of the elasticity of substitution when computing the profitability

entry threshold z∗ij or the corresponding extensive margin contribution to the partial trade

elasticity, γij. The main distinction is that our firm-level profitability construct consolidates

various types of (productivity or demand) shocks and the elasticity of substitution into a

single parameter, zij. As a result, we can use equation (11) to directly estimate parameters

of the profitability distribution, Gij(.), from log-export sales data, and then use equations

(10) and (12) to compute z∗ij and γij using only the estimated distribution. The advantage of

our approach lies in its ability to estimate the extensive margin of the partial trade elasticity

without estimating the elasticity of substitution, ε, which has it own challenges as extensively

discussed in Bas, Mayer, and Thoenig (2015).27

6 Quantifying Trade Elasticities

In this section, we report the quantitative magnitudes of extensive margin elasticities and the

resulting extent of variation in the partial trade elasticity across origin-destination country

pairs. We find that the magnitude of adjustment in the extensive margin is negligible.

Therefore, even with selection into exporting, most of the adjustment in trade flows derive

from changes in trade by incumbent exporters. We subsequently show that the size of the

extensive margin adjustment is exaggerated when left truncated data are used in estimation.

25As the name suggests, the “average-to-minimum ratio” in a destination-year distribution is constructed as
the ratio of average sales to smallest sales record observed.

26The theoretical average-to-minimum ratio in equation (12) is not defined when the value of λR < 1. Hence,
in this case, a solution for the entry threshold cannot be found. For those observations, we proceed by
evaluating the probability mass, gij(.)/(1−Gij(.)), at the minimum value of log-export sales. Given that
the distribution of log-export sales and the distribution of profitability differ by a constant (see equation
(11)), the shift of a distribution by a constant does not affect the mass at a corresponding truncation point.

27Without loss of generality for the decomposition of trade elasticity into intensive and extensive margins, we
assume ε = 6. This value lies within the range used in the literature, see Broda and Weinstein (2006) and
Bas et al. (2015). Subsequent results on the extensive margin contribution to the partial trade elasticity
do not depend on the particular value we choose.
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6.1 Trade Elasticity Estimates

Panel A in Table 3 reports summary statistics of the estimated values of the extensive margin

elasticities, γij. Result 2 summarizes the contents of the table, as follows.

Result 2 (Quantitative magnitude of the extensive margin elasticities)

(i) The extensive margin contribution to the partial trade elasticity implied by the Double

EMG distributions is small, with the average order of magnitude being 10−5.

(ii) There is little variation in the extensive margin elasticity across origin-destination coun-

try pairs, as the standard deviation across estimates implied by the Double EMG distributions

is on the order of 10−4.

To put the magnitudes reported in Result 2 in perspective, consider the average sample

value of the extensive margin elasticity implied by the Double EMG distribution, which

equals 1.3 · 10−5. This value should be understood in the context of equation (9), where

the partial trade elasticity for an average observation equals (1− ε) · (1 + 1.3 · 10−5). Given

a value for the elasticity of substitution of ε = 6, a 1% decline in variable trade costs will

increase trade by 5.0001%, to which the entry and exit of firms contribute only 0.0001%.

To further emphasize the small magnitude of the extensive margin adjustment, suppose

that a 1% decline in variable trade costs leads to 500 million dollars in increased export

sales. According to equation (9), every one dollar of new trade can be decomposed into an

intensive and extensive margin adjustment in the proportion of 1 to γij, or 1 to 1.3 · 10−5.

Therefore, those 500 million dollars of new trade amount to $499,993,500 of intensive versus

$6,500 of extensive margin adjustment. Hence, the extensive margin is quantitatively and

economically small.

Discussion: While the theory advanced in equation (9) attributes all origin-destination

specific variation in the partial trade elasticity to variation in the extensive margin compo-

nent, our estimates of the extensive margin component are so small that there is essentially

no variation. As a result, nearly all trade adjustment in response to a decline in variable

trade costs is accounted for by changes on the intensive margin. This is confirmed in the

last two columns of Table 3, which reports that the partial trade elasticity exhibits negligible

variation across destinations (3.5 · 10−4) and has an average value that approximately equals

the level of the partial trade elasticity (ε − 1 = 5).28 Therefore, even though selection into

28 Our analysis does not exclude the possibility that there could be variation in the partial trade elasticity
due to variation in the elasticity of substitution, ε, across destinations. Our results merely indicate that
if there is variation in the partial trade elasticity across destinations, then it is not due to the extensive
margin.
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exporting might exist as an additional channel of adjustment, most of the adjustment to

trade is accounted for by changes in trade among incumbent exporters.

The small extensive margin of the partial trade elasticity occurs because entrants account

for very little of the change in trade flows. Mechanically, our strategy for identifying the

profitability threshold, z∗, in the extensive margin of the partial trade elasticity (see Section

5.5) relies on sales data from the smallest firm in a given export sales distribution. As shown

in Panel D of Table 1, the size of the smallest exporter is about 62,000 times smaller than

the size of an average exporter. Accordingly, our quantitative finding that the contribution

of the intensive relative to the extensive margin to the trade elasticity in the proportion of

1 to γij, or 1 to 10−4, is consistent with the abundance of small firms in the export sales

distributions documented in Section 2. Note that this result does not imply that there is

little firm turnover when trade costs change, but rather that the entrants account for very

little of changes in the value of trade flows.

This result contrasts with previous findings, such as those in Bas, Mayer, and Thoenig

(2015). Using a similar identification strategy to this paper’s, that relies on the size of the

smallest exporter, Bas et al. (2015) find a significant amount of variation in bilateral trade

elasticities in French and Chinese data sets. The standard deviation of bilateral trade elas-

ticities calculated across destinations equals 0.742 in Bas et al. (2015) (see Table 3 therein)

versus 10−4 in our sample. This difference in variation is likely driven by sample truncation

since in the French trade data employed by the authors, small exporters are not always re-

quired to report their exports. Excluding the left tail of the export sales distribution would

lead to an overestimation of the size of the smallest exporter, and therefore an overestima-

tion of both trade elasticities and their variation across destinations. In the next section, we

measure the bias that arises from identifying trade elasticities using truncated micro-data.

6.2 Sample Truncation Bias

Data restrictions pose additional challenges to correctly identifying bilateral trade elastic-

ities. In that regard, many customs-level data sets are truncated. For example, as is the

case for frequently used European Union export data, exporters are not required to report

export sales below a given threshold. This threshold can vary from as low as 700 euros

for intra-EU trade with Malta to as large as over 1 million euros for intra-EU trade with

Belgium, Netherlands, or the United Kingdom (EUROSTAT, 2017). These reporting rules

are exogenous to the researcher, but they are not without consequence for estimating policy

relevant trade statistics.

At a conceptual level, omitting firms below a certain size threshold disproportionately
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increases the size of the smallest (marginal) firm that is observed by the econometrician,

and therefore exaggerates the contribution of a marginal firm to changes in trade arising

from changes in variable trade costs. As can be been seen from Table 1 and Table 2, a

modest sample truncation of $5,000 reduces the gap between the average and the smallest

firm, measured as the average-to-minimum ratio, by a factor of 100 in a typical export sales

distribution. Accordingly, a smaller average-to-minimum ratio, Eij(e
z|z > z∗ij)/e

z∗ij , leads to

a higher extensive margin of trade elasticity, γij, in equation (10). Therefore, given that

the size of the smallest exporter identifies the trade elasticity and that truncated samples

disproportionately increase the size of the smallest exporters relative to the size of the average

exporter, truncated samples are likely to overstate the contribution of the extensive margin

of the partial trade elasticity and hence generate misleadingly high variation in bilateral

elasticities. We refer to this effect of data truncation on estimated values of a partial trade

elasticity as truncation bias.29

In order to quantify this truncation bias in elasticity estimates, we conduct a set of coun-

terfactual experiments using truncated samples similar to those discussed in Table 2. Recall,

that to construct a truncated sample in Table 2, we take the original log-sales data and drop

all firm-destination-year observations with a value of exports below $5,000. We then recom-

pute the average-to-minimum ratio based on the truncated sample, and, using the recovered

Double EMG distributions’ parameters, recompute the extensive margin elasticities.30 We

run our counterfactual analysis for samples that are truncated at $5,000, $50,000, $100,000,

and $250,000.

Result 3 (Sample Truncation Bias) Consider a truncated sample due to dropping all firm-

destination export sales lower than a given value.

(i) Data truncation generates an upward bias in the extensive margin elasticity estimates.

29Equation (10) also assigns a role to the mass of firms at the margin of entry, gij(z
∗)/(1 − Gij(z∗)), in

calculating the extensive margin of the partial trade elasticity. It can be readily shown that gij(z
∗)/(1 −

Gij(z
∗)) is increasing in z∗ for any truncation below the mode of the Double EMG distribution. Therefore,

data truncation also induces a larger value for γij through the mass of firms at the margin. We find that
this plays a secondary role in our calculations, and hence our focus on the average-to-minimum ratio in
the main text.

30 Note, that since we already fit a truncated Double EMG distribution to compute the partial trade
elasticities in Section 6.1, the counterfactuals do not require us to re-estimate the Double EMG distribution
parameters. This is due the fact that a Double EMG distribution is uniquely defined by its parameters and
the probability density function, and, hence, any truncated version of a given non-truncated distribution
in uniquely defined by its truncation point and the same unique set of parameters of the corresponding
underlying non-truncated distribution. This approach further helps us to overcome the problem arising
from a potential measurement error that stems from the inherent noise in the data set: As we truncate
the data, the number of sample points that identify a distribution declines, and therefore the precision of
parameter estimates also declines. Using parameter estimates of the truncated distribution fit to the full
data as discussed Section 6.1 allows us to demonstrate the bias arising from data truncation rather than
a potential bias from the noise in the truncated data.
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The magnitude of the bias grows as the truncation value increases.

(ii) Data truncation increases the cross-country standard deviation of the extensive margin

and partial trade elasticities. The cross-country standard deviation grows as the truncation

value increases.

Panel B in Table 3 reports estimates of the trade elasticities for a truncated sample

and compares them to the estimates from a full sample. As can be seen from Panel B,

a small data truncation of $5,000 in firm sales per destination yields an upward bias in

the extensive margin elasticity estimate. Notice the increase in the average the extensive

margin trade elasticity estimate implied by the Double EMG distribution, from 1.3 · 10−5 to

0.003. To motivate the size of this bias, suppose again that there were a reduction in variable

trade costs that generates a 500 million dollar increase in export sales. The truncated sample

estimates attribute $1.5 million of the increase to trade generated by entering firms, while the

non-truncated sample estimates would attribute only $6,500. Likewise, a larger truncation

of $50,000 in firm sales per destination yields a much larger upward bias in the extensive

margin elasticity, from 1.3·10−5 to 0.042. Again supposing a reduction in variable trade costs

that leads to a 500 million dollar increase in export sales, the truncated sample estimates

now attribute 20 million dollars of the increase to trade generated by entering firms. As the

truncation value increases, so does the amount of the increase that is attributed to trade

generated by entering firms.

Finally, the truncated sample generates larger variation in the partial trade elasticity

estimates across destination-year observations. The standard deviation of Double EMG

distribution-generated partial trade elasticities is 3.5 · 10−4 on a non-truncated sample and

increases to 0.03 when sample is truncated at $5,000, and further increases to 0.33 when

the sample is truncated at 50, 000. The standard deviation derived from truncated samples

moves our estimated elasticities closer to those reported in Bas, Mayer, and Thoenig (2015).

Hence, using truncated samples of our data generates false conclusions regarding the

magnitude, variation and, therefore, economic significance of extensive margin adjustments.

6.3 Welfare Implications

In this section, we quantitatively illustrate how truncation bias can lead to significant errors

in the measurement of welfare gains from a reduction in variable trade costs. To make this

exercise as clear as possible, we conduct a standard general equilibrium welfare analysis using

a symmetric two-country version of the model outlined in Section 5.

To conduct the welfare analysis we must first select model parameters. We calibrate

model parameters so that the equilibrium partial trade elasticity in the model matches the
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partial trade elasticity implied by the a given empirical export sales distribution. Specifi-

cally, we calibrate the fixed export cost, fx and the variable trade cost, τ , to match the two

moments that are used to quantify trade elasticities in Section 5.5: the value of the minimum

export sales observation and the average-to-minimum ratio of export sales of the empirical

distribution under consideration. Next, we perform the calibration procedure separately

for each of the four truncated versions of the empirical distribution, which are truncated

at values of $5,000, $50,000, $100,000, and $250,000. All other parameters are set in ad-

vance of calibration and do not change across calibrations.31 For explication, we consider a

representative export sales distribution in a given year to a given destination.32

Note that since the partial trade elasticity is an endogenous outcome of the model, cal-

ibrated parameters fx and τ will be different for each of the truncated distributions. This

is because the calibration targets (the partial trade elasticity and its components) change

with the degree of data truncation, as seen in Table 3. As a result, because of truncation

bias in measuring partial trade elasticities, parameter values calibrated using truncated dis-

tributions will also be mismeasured relative to the parameter values recovered from using a

non-truncated distribution. As shown in Table 4, larger truncation leads to overestimation

of both parameters. The magnitude of the fixed export cost parameter is overestimated by

a factor of 100 to 10,000, relative to the parameter value recovered from the non-truncated

distribution. Furthermore, the variable export cost parameter is overestimated by approx-

imately 1% to 10%. This overestimation of the underlying parameters, which is driven

by truncation bias in measuring the endogenous partial trade elasticities, leads to error in

measuring the welfare gains from a trade liberalization.

In order to demonstrate the relationship between sample truncation bias and the welfare

gains from trade, we compute welfare changes from a range of changes in variable trade

costs. Specifically, we consider a range of changes in variable trade costs, from a 50 percent

decrease to a 50 percent increase relative to the calibrated value of τ . We next compare the

percent gains in real income, which is the model’s measure of welfare, implied by the full

sample to that implied by each of the truncated samples. Figure 5 depicts results of this

experiment. The horizontal axis measures the percent change in the variable trade costs and

the vertical axis measures the welfare wedge. The welfare wedge is obtained by subtracting

the percent change in welfare computed using a full sample from that computed using a

truncated sample. For example, a value of -2 implies that a truncated sample will predict

an increase in welfare that is 2 percentage points less compared to an increase predicted by

31As in Section 5.5, we set ε = 6. Without the loss of generality we set L = 108, J = 30, fd = 1.
32These results are robust to the choice of years and destinations, and a full set of results are available upon

request.
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the full sample.

Figure 5 shows that truncated samples underpredict the magnitude of welfare gains by

1 to 9 percentage points depending on the size of the trade liberalization and the size of

the truncation point. For example, when trade costs decline by 20 percent, data that are

truncated at $250,000 dollars will underpredict the percent increase in welfare by 2 percentage

points. Furthermore, the larger is the data truncation, the larger is the error in estimating

the welfare gains.

The economic significance of these magnitudes can be understood as follows. The magni-

tude of the lower bound of 1% is comparable to average GDP growth in the U.S. of about 2%

per year over the past ten years. Similarly, over the past thirty years average Brazilian GDP

growth was 2.5% per year. The upper bound of 9% is comparable with average GDP growth

in China of 10% per year since 2000. Therefore, a truncated sample leads to underestimated

welfare gains to trade by magnitudes that range from a typical GDP growth experience to

a large economic boom, which is an economically significant margin of error.

7 Conclusion

New trade theory predicts that welfare gains can be characterized by the share of expendi-

ture on the domestic goods and the partial trade elasticity (the elasticity of trade flows with

respect to changes in variable trade costs). In this paper we focus on quantifying the partial

trade elasticity, which depends crucially on the distribution governing firm-level heterogene-

ity, and ask: what is the role of small firms in determining the gains from trade? We find

that small firms substantially attenuate the magnitude of the partial trade elasticity and,

subsequently, amplify the gains from trade.

We arrive at this answer by using a data set on Brazilian export sales that, unlike standard

trade data sets, has not been exogenously left-truncated as a result of custom office rules.

We observe the full export sales distribution. Exploiting the special features of this data, we

contribute two stylized facts to the trade literature. First, export sales distributions are not

symmetric and, in fact, exhibit high variation in skewness, mostly positive but also negative,

across destinations. Second, export sales distributions have both fat right tails and fat left

tails. While it is well known that the right tail of sales distributions tend to be fat, that the

left tail is fat is new to the trade literature.

These stylized facts are puzzling from the perspective of standard distributional assump-

tions in new trade models: neither the Pareto nor log-Normal distributions exhibit a fat left

tail or an ability to generate differences in skewness across export destinations. We confront

this puzzle by introducing a distribution that generalizes both the Pareto and log-Normal
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distributions, the Double Exponentially Modified Gaussian distribution. We demonstrate

that, due to its ability to generate different behavior in its two tails and generate variable

skewness, the Double Exponentially Modified Gaussian distribution fits the export sales data

better than either the Pareto or log-Normal distribution.

We proceed by embedding the Double EMG distribution in a standard model of trade

with monopolistic competition to show that if our data set were left-truncated in a way that

was consistent with other data sets, then there would be a truncation bias in measuring the

partial trade elasticity. That is, the extensive margin trade elasticity would be too large. We

find the severity of the upward bias is larger for samples with larger truncation points and

varies from 0.3% to 14%. We further conduct a conterfactual analysis that demonstrates

that the truncation bias leads to underestimation of the gains from trade by 1% to 9%.

These magnitudes are comparable to GDP growth rates during moderate to large economic

booms.

Therefore, small firms in the left tail of export distributions tend to drive the extensive

margin elasticity down. Large extensive margin elasticities that have been computed using

left-truncated data overstate the partial trade elasticity and, subsequently, understate the

gains from trade.
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Figures and Tables

Table 1: Properties of the log-sales distribution across destination-year observations over
1990-2001.

Statistic Mean Median Standard

Deviation

Min Max

Panel A: Moment based statistics

Standard Deviation 2.11 2.12 0.28 1.28 2.77

Skewness 0.03 0.02 0.24 -1.08 1.29

Nonparametric Skew 0.03 0.03 0.06 -0.19 0.21

Kurtosis 3.17 3.03 0.60 2.08 8.14

Panel B: Percentile based statistics

Interquartile Range 2.82 2.83 0.49 1.50 4.44

Kelly Skewness 0.04 0.04 0.08 -0.30 0.35

Percentile Coefficient of Kurtosis 0.26 0.26 0.02 0.19 0.34

Panel C: Tail parameter estimates

Top 5% 1.42 1.27 0.62 0.39 6.67

Top 10% 1.18 1.13 0.31 0.49 2.78

Top 15% 1.08 1.04 0.25 0.52 2.58

Bottom 5% 1.21 1.13 0.50 0.44 4.77

Bottom 10% 1.07 1.04 0.29 0.45 3.67

Bottom 15% 1.01 0.98 0.23 0.48 2.77

Panel D: Other

Average-to-minimum ratio 62,364.20 5,389.58 262,813.20 32.73 2,937,802

Note: the statistics are reported across 847 destination-year observations where at least 100 firms
export.
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Table 2: Properties of the log-sales distribution across destination-year observations
over 1990-2001, Sample truncated at $5,000.

Statistic Mean Median Standard

Deviation

Min Max

Panel A: Moment based statistics

Standard Deviation 1.74 1.74 0.26 1.05 2.44

Skewness 0.59 0.60 0.27 -0.40 2.43

Nonparametric Skew 0.12 0.13 0.07 -0.17 0.38

Kurtosis 2.99 2.86 0.83 1.85 13.02

Panel B: Percentile based statistics

Interquartile Range 2.52 2.50 0.47 1.36 4.05

Kelly Skewness 0.15 0.16 0.09 -0.22 0.48

Percentile Coefficient of Kurtosis 0.28 0.28 0.02 0.21 0.36

Panel C: Tail parameter estimates

Top 5% 1.47 1.32 0.73 0.38 11.91

Top 10% 1.22 1.17 0.33 0.47 2.87

Top 15% 1.11 1.07 0.26 0.51 2.70

Bottom 5% 8.61 7.57 4.12 1.04 37.40

Bottom 10% 4.61 4.35 1.45 1.12 11.27

Bottom 15% 3.35 3.22 0.92 1.11 7.07

Panel D: Other

Average-to-minimum ratio 159.98 105.25 152.46 9.67 942.63

Note: the statistics are reported across 813 destination-year observations where at least 100
firms export and exprt value per firm-destiantion-year is $5,000 or more.
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Table 3: Trade elasticity estimates.

Truncation Point Extensive Margin Partial Trade Elasticity,

Elasticity, γij |(1− ε)(1 + γij)|
Mean Std. Dev. Mean Std. Dev.

Panel A: Elasticity Estimates - Full Sample

No truncation 1.3 · 10−5 7.0 · 10−5 5.00 3.5 · 10−4

Panel B: Elasticity Estimates - Truncated Samples

$5,000 0.003 0.006 5.02 0.03

$50,000 0.042 0.066 5.21 0.33

$100,000 0.075 0.122 5.37 0.61

$250,000 0.144 0.267 5.72 1.33

Panel C: Sample Truncation Bias

$5,000 1.003 0.006

$50,000 1.042 0.066

$100,000 1.075 0.122

$250,000 1.144 0.267

Note: Panel A reports sample means and standard deviations of the
corresponding elasticity estimates. Panel B of the table reports sample means
and standard deviations of the elasticity estimates from truncated samples as
indicated in the first column. Panel C reports statistics for the ratio of the
corresponding elasticity estimates from a truncated sample relative to the full
sample. To compute the partial trade elasticity, the value of ε = 6 is assumed.

Table 4: Calibrated Parameters.

Truncation Point Fixed Export

Cost, fx

Variable Export

Cost, τ

No truncation 1.5 1.48

$5,000 833 1.50

$50,000 8,333 1.55

$100,000 16,741 1.58

$250,000 42,200 1.63

Note: the table reports calibrated parameter values for each
of the corresponding samples.
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Figure 1: Heterogeneity in the tail index estimates of log-sales distributions across export
destinations.
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Notes: The figure depicts a scatter plot of the right and left tail index estimates for for the top and bottom

5% of firms. Each dot in the figure corresponds to an estimate of the right and left tail indexes for a given
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Figure 2: An example of a Normal and a Double EMG distribution.

-5 0 510-6

10-5

10-4

10-3

10-2

10-1

100

P
ro
b
ab

il
it
y
D
en
si
ty

Notes: The figure depicts two probability density function (pdf) for two distribution with zero mean and

unit variance. The solid line depicts a pdf for an symmetric EMG disquisition with tail parameters equal to

1.5. The dashed line depicts a pdf for a Normal distribution. The y-axis is plotted on the log scale.
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Figure 3: Comparison of model errors and tail properties.
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Figure 4: Goodness of fit statistics across each destination-year observation.
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Figure 5: Counterfactual welfare changes.
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Appendix

A Proofs of Propositions
(For Online Publication Only)

Proposition 1 Let x and y be independent random variables such that x ∼ N (µ, σ2), y ∼
DE(λL, λR) and parameters satisfy µ ∈ R, σ > 0, and λL, λR > 0. The random variable

z ≡ x+ y has the cumulative distribution function G : R→ [0, 1] given by:

G(z) = Φ

(
z − µ
σ

)
− λL
λL + λR

e−λR(z−µ)+σ2

2
λ2RΦ

(
z − µ
σ
− λRσ

)

+
λR

λL + λR
eλL(z−µ)+σ2

2
λ2LΦ

(
−z − µ

σ
− λLσ

)
,

the density function:

g(z) =
λLλR
λL + λR

[
e−λR(z−µ)+σ2

2
λ2RΦ

(
z − µ
σ
− λRσ

)
+ eλL(z−µ)+σ2

2
λ2LΦ

(
−z − µ

σ
− λLσ

)]
,

and the moment generating function:

Mz(t) =
λLλR

(λL + t)(λR − t)
eµt+

σ2

2
t2 .

Proof of Proposition 1

Consider Lemma 1 below.

Lemma 1 Let x and y be independent random variables such that x ∼ N (µ, σ2), y ∼ E(λ)

and parameters satisfy µ ∈ R, σ > 0, and λ > 0. The random variable z ≡ x + y has the

cumulative distribution function G : R→ [0, 1] given by:

G(z) = Φ

(
z − µ
σ

)
− e−λz+

(
µλ+σ2

2
λ2

)
Φ

(
z − µ
σ
− λσ

)
,

the density function:

g(z) = λe
−λz+

(
µλ+σ2

2
λ2

)
Φ

(
z − µ
σ
− λσ

)
,
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and the moment generating function:

Mz(t) =
λ

λ− t
eµt+

σ2

2
t2 .

Proof of Lemma 1

Let x and y be random variables such that x ∼ N (µ, σ2), y ∼ E(λ) and parameters

satisfy µ ∈ R, σ > 0 and λ > 0. For notational convenience, denote the density function

that corresponds to the Normal distribution N (µ, σ2) by f(x) = (1/σ)φ((x− µ)/σ). In the

following derivations, we will make use of the conditional expectation for log-Normal random

variables: ∫ +∞

x∗
(ex)κ f(x)dx = eκµ+ 1

2
κ2σ2

(
1− Φ

(
x∗ − µ
σ

− κσ
))

Let the random variable z ≡ x + y have the distribution function G : R → [0, 1], which we

now derive: ∫ z∗

−∞
zg(z)dz = Prob (x+ y < z∗) =

∫ z∗

−∞

(
1− e−λ(z∗−x)

)
f(x)dx

Using the conditional expectation for log-Normal random variables, we obtain:

G(z∗) = Φ

(
z∗ − µ
σ

)
− e−λz∗+(λµ+ 1

2
λ2σ2)Φ

(
z∗ − µ− λσ2

σ

)
Next we derive the density function:

∂

∂z

∫ z

−∞
zdG(z) =

∫ z

−∞
λe−λyf(z − y)dy

=
λ√
2πσ

∫ z

−∞
e−λy−

1
2( z−y−µσ )

2

dy

=
λ√
2πσ

e−λz+λµ+ 1
2
λ2σ2

∫ z

−∞
e
− 1

2

(
z−y−µ−λσ2

σ

)2

dy

g(z) = λe−λz+(λµ+ 1
2
λ2σ2)Φ

(
z − µ− λσ2

σ

)
Lastly, we derive the moment generating function. To do so, we will appeal to an intermediate
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result, that if g(z) is a density function then it must integrate to one:∫ +∞

−∞
g(z)dz =

∫ +∞

−∞
λe−λz+(λµ+ 1

2
λ2σ2)Φ

(
z − µ− λσ2

σ

)
dz

= e−
1
2
λ2σ2

∫ +∞

−∞
λσe−λσy

∫ y

−∞

1√
2π
e−

1
2
x2dxdy

where we have used the change of variables y = (z − µ− λσ2)/σ. Then we know that:∫ +∞

−∞
λσe−λσy

∫ y

−∞

1√
2π
e−

1
2
x2dxdy = e

1
2
λ2σ2

Given this result, we can use the change of variables y = (z − µ − λσ2)/σ to derive the

moment generating function:

Mz(t) =

∫ +∞

−∞
e−tzλe−λz+(λµ+ 1

2
λ2σ2)Φ

(
z − µ− λσ2

σ

)
dz

=
λ

λ− t
e−

1
2
λ2σ2+t(µ+λσ2) ·

∫ +∞

−∞
(λ− t)σe−(λ−t)σy

∫ y

−∞

1√
2π
e−

1
2
x2dxdy

=
λ

λ− t
e−

1
2
λ2σ2+t(µ+λσ2) · e

1
2

(λ−t)2σ2

=
λ

λ− t
· eµt+

σ2

2
t2

Note that the MGF for the EMG is the product of the MGF for the Exponential distribution

and the MGF for the N (µ, σ2) distribution. QED.

Deriving the cumulative distribution function, density function and moment generating

function of the Double Exponentially Modified Gaussian distribution follows steps from the

proof for Lemma 1. The main difference is that the Double Exponential distribution changes

functional form at its kink, y = 0. �

Proposition 2 (Limiting Results) Let z be a Double Exponentially Modified Gaussian dis-

tributed random variable with parameters (µ, σ, λL, λR). The random variable z is (i) an

Exponentially Modified Gaussian distributed random variable as λL goes to infinity, (ii) an

Exponentially Modified Gaussian distributed random variable with a Normal right tail and

Exponential left tail as λR goes to infinity, (iii) a Double Exponentially distributed random

variable as σ goes to zero, where if µ 6= 0 then this limiting distribution is a shifted Double

Exponential distribution, and (iv) an Exponentially distributed random variable as σ goes to

zero and λL goes to infinity.
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Proof of Proposition 2

Consider Lemma 2 below.

Lemma 2 Let z be an Exponentially Modified Gaussian distributed random variable with

parameters (µ, σ, λ). The random variable z is Normally distributed in the limit as λ goes to

infinity, that is,

lim
λ→+∞

[
Φ

(
z − µ
σ

)
− e−λz+

(
µλ+σ2

2
λ2

)
Φ

(
z − µ
σ
− λσ

)]
= Φ

(
z − µ
σ

)
.

Furthermore, the random variable z is exponentially distributed in the limit as σ goes to zero.

That is

lim
σ→0

[
Φ

(
z − µ
σ

)
− e−λz+

(
µλ+σ2

2
λ2

)
Φ

(
z − µ
σ
− λσ

)]
= 1− e−λ(z−µ),

where, if µ > 0 then this limiting distribution is a shifted Exponential distribution on

(µ,+∞). Lastly, consider the limit with respect to the value of the random variable z. There

exists a value of z denoted z̄ such that ∀ z ≥ z̄ the distribution G(z) approaches a shifted

Exponential distribution:[
Φ

(
z − µ
σ

)
− e−λz+

(
µλ+σ2

2
λ2

)
Φ

(
z − µ
σ
− λσ

)]
≈ 1− e−λz+

(
µλ+σ2

2
λ2

)
.

Proof of Lemma 2

We will consider each of the three limits of G(z) in turn:

(a) λ→ +∞, (b) σ → 0, (c) z → +∞

(a) We first take the limit of G(z) as λ→ +∞. We know that

lim
λ→+∞

Φ

(
z − µ− λσ2

σ

)
= lim

λ→+∞
e−λz = 0 ∀ z ∈ R̄, z 6= 0

We must now show that exp(λµ + λ2σ2/2) reaches +∞ at a slower rate than exp(−λz) ×
Φ((z − µ− λσ2)/σ) reaches 0. To do so, we appeal to l’Hôpital’s rule:

lim
λ→+∞

∂
∂λ
e−λzΦ

(
z−µ−λσ2

σ

)
∂
∂λ
eλµ+ 1

2
λ2σ2

= lim
λ→+∞

−zΦ
(
z−µ−λσ2

σ

)
+ 1

σ
φ
(
z−µ−λσ2

σ

)
µ+ λσ2

e−λz−λµ−
1
2
λ2σ2

= 0

The limit equals zero since eλ
2σ2

converges to zero faster than linearly, e.g. faster than λσ2.

(b) Next take the limit as σ → 0. Let µ > 0. As σ approaches 0, the Normal density
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becomes a point mass at µ and therefore: Φ
(
z−µ
σ

)
= 1[z ≥ µ]. Then clearly the limit of

G(z) as σ approaches 0 equals 1− exp(−λ(z − µ)) on (µ,+∞) and zero elsewhere.

(c) Lastly, we show that there exists some z̄ such that for all z ≥ z̄, G(z) ≈ 1−exp(−λ(z−
µ− 1

2
λσ2)). We must show that as z → +∞, exp(−λz) approaches 0 at a slower rate than

Φ( z−µ−λσ
2

σ
) approaches 1. To do so, apply l’Hôpital’s rule:

lim
z→+∞

e−λz

Φ( z−µ−λσ
2

σ
)

= lim
z→+∞

−λe−λz
1
σ
φ( z−µ−λσ

2

σ
)
∝ lim

z→+∞
e
−
(
λ+µ+λσ2

σ2

)
z+ 1

2( zσ )
2

= +∞

Therefore, since both functions are decreasing in z, exp(−λz) approaches 0 slower than

Φ( z−µ−λσ
2

σ
) approaches 1. Therefore, there exists z̄ sufficiently large such that:

∀ z ≥ z̄ Φ

(
z − µ
σ

)
≈ 1 and Φ(

z − µ− λσ2

σ
) ≈ 1

and

G(z) ≈ 1− e−λz+
(
µλ+σ2

2
λ2

)

Therefore for sufficiently large values of z, the EMG is approximated by a shifted Exponential

distribution. QED.

Deriving limiting results for the Double EMG distributions follows similar steps to the

proof of Lemma 2. �

Proposition 3 If z is a Double Exponentially Modified Gaussian distributed random vari-

able on (−∞,+∞) then the skewness of z is given by

skew(z) = 2

(
1

σ3λ3
R

− 1

σ3λ3
L

)(
1 +

1

σ2λ2
R

+
1

σ2λ2
L

)− 3
2

.

Furthermore, the sign of skew(z) is determined by the relative size of the tail parameters:
skew(z) > 0 if λL > λR,

skew(z) = 0 if λL = λR,

skew(z) < 0 if λL < λR.


Proof of Proposition 3

Given the moment generating function for the Double Exponentially Modified Gaussian
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distribution, we use the cumulant generating function defined as:

Cz(t) ≡ log(Mz(t)) = log(λRλL)− log(λR − t)− log(λL + t) +

(
µt+

σ2

2
t2
)
.

The n-th centered moment is given by the n-th derivative of Cz(t) evaluated at zero, or

C
(n)
z (0). Therefore, the mean and variance are:

C ′z(t) = µ− 1

λR − t
(−1)− 1

λL + t

C ′′z (t) = σ2 +
−1

(λR − t)2
(−1)− −1

(λL + t)2

C ′′′z (t) =
−2

(λR − t)3
(−1) +

−2

(λL + t)2

which yield the first three centered moments of the Double Exponentially Modified Gaussian

Distribution:

E[x] = C ′z(0) = µ+
1

λR
− 1

λL

E[(x− E[x])2] = C ′′z (0) = σ2 +
1

λ2
R

+
1

λ2
L

E[(x− E[x])3] = C ′′′z (0) = 2

(
1

λ3
R

− 1

λ3
L

)
Therefore the skewness of the Double EMG distribution is:

skew(z) =
2
(

1
λ3R
− 1

λ3L

)
(
σ2 + 1

λ2R
+ 1

λ2L

)3/2
= 2

(
1

σ3λ3
R

− 1

σ3λ3
L

)(
1 +

1

σ2λ2
R

+
1

σ2λ2
L

)−3/2

.

Notice that the skewness can also be expressed as

skew(z) = 2
λ3
L − λ3

R

(σ2λ2
Rλ

2
L + λ2

L + λ2
R)

3
2

.

The sign properties of the skewness follow immediately. �

B Baseline Trade Model
(For Online Publication Only)

A6



APPENDIX FOR ONLINE PUBLICATION ONLY

B.1 Economic Environment

There are N countries. We will denote by i the origin country and by j a destination country.

Each country j is populated by Lj identical consumers with preferences given by a constant

elasticity of substitution utility function given by

Uj =

(
N∑
i=1

∫
ω∈Ωij

(
eθij(ω)

) 1
ε cij(ω)

ε−1
ε dω

) ε
ε−1

, (13)

where Ωij is the set of varieties consumed in country j originating from country i, cij(ω)

is the consumption of variety ω ∈ Ωij, ε is the elasticity of substitution, and θij(ω) is the

demand parameter for variety ω ∈ Ωij.
33

Each consumer owns a share of domestic firms and is endowed with one unit of labor

that is inelastically supplied to the market. Cost minimization yields optimal demand for

variety ω ∈ Ωij given by

cij(ω) = eθij(ω)pij(ω)−εYjP
ε−1
j , (14)

where pij(ω) is the price of variety ω ∈ Ωij, Yj is income in country j and Pj is the aggregate

price index in country j. The aggregate price index is given by

P 1−ε
j =

N∑
i=1

∫
ω∈Ωij

eθij(ω)pij(ω)1−εdω. (15)

B.2 Supply

As in Chaney (2008), each country is endowed with the exogenous mass Ji of prospective

entrants. Upon entry, a firm is endowed with an idiosyncratic labor productivity level ϕ and

a destination-specific demand parameter θj. Productivity and destination-specific demand

parameters are drawn from separate independent distributions. Firms face fixed fij and

variable τij costs of selling from country i to country j denominated in terms of units of

labor.

Once productivity and demand are realized, firms compete in a monopolistically com-

petitive environment. Firms maximize profits subject to the consumer demand (14) yielding

33Bernard, Redding, and Schott (2010) interpret θij(ω) as variations in consumer tastes or relative demand
across different varieties. In Timoshenko (2015) θij(ω) represents product demand that firms need to learn
over time through market participation.
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the optimal price given by

pij(ϕ) =
ε

ε− 1

τijwi
ϕ

,

where wi is the wage in country i. The corresponding firm’s optimal revenues and profits

are given by

rij(θij, ϕ) =

(
ε− 1

ε

)ε−1

(τijwi)
1−ε YjP

ε−1
j eθijϕε−1, (16)

πij(θij, ϕ) =
rij(θij, ϕ)

ε
− wifij. (17)

Notice from equations (16) and (17) that a firm’s profitability in market j depends on both

a firm’s productivity ϕ and a demand parameter θj in a multiplicative way. Hence a low

productivity firm can generate positive profits if the demand for its product is high, and

vise versa. Thus, selection into a market occurs based on a firm’s profitability, and not

productivity or demand alone. Denote by zij the firm’s payoff relevant state variable given

by

zij = θij + log
(
ϕε−1

)
. (18)

We will refer to zij as a firm’s profitability in market j. Given zij, we can rewrite the

firm’s optimal revenue and profit as a function of profitability zij as

rij(zij) =

(
ε− 1

ε

)ε−1

(τijwi)
1−ε YjP

ε−1
j ezij . (19)

πij(zij) =
rij(zij)

ε
− wifij. (20)

Since there are no sunk entry costs, the profitability entry threshold is determined by the

zero-profit condition πij(z
∗
ij) = 0 and is given by

ez
∗
ij =

εwifij(wiτij)
ε−1(

ε−1
ε

)ε−1
YjP

ε−1
j

. (21)

The firm’s optimal revenue can then be written as a function of a firm’s profitability, zij,

and the profitability entry threshold z∗ij as

rij(zij) = εwifij
ezij

ez
∗
ij
. (22)
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B.3 Trade Elasticity

The value of exports from country i to country j is defined as

Xij = Mij

∫ +∞

z∗ij

rij(z)
gij(z)

1−Gij(z)
dz, (23)

where Mij is the equilibrium mass of firms selling from country i to country j and is given

by

Mij = Ji(1−Gij(z
∗
ij)). (24)

The cumulative and the probability distribution functions of firms profitabilities are denoted

by Gij(z) and gij(z) correspondingly.

Proposition 4 below establishes the partial trade elasticity result.

Proposition 4 The partial elasticity of trade flows with respect to variable trade costs is

given by

∂ logXij

∂ log τij
= (1− ε)(1 + γij),

where γij given by

γij =
gij(z

∗
ij)

(1−Gij(z∗ij))

ez
∗
ij

Eij(ez|z > z∗ij)
.

Proof: Substitute equations (22) and (24) into equation (23) to obtain

Xij = εJiwifij

∫ +∞

z∗ij

(
ezij−z

∗
ij
)
gij(z)dz.

Using the Leibniz’s Integration Rule:

∂Xij

∂τij
= εJiwifij

[
−
∂z∗ij
∂τij

∫ +∞

z∗ij

(
ezij−z

∗
ij
)
gij(z)dz − g(z∗ij)

∂z∗ij
∂τij

]

= εJiwifij

[
−
∂z∗ij
∂τij

e−z
∗
ij(1−Gij(z

∗
ij))Eij(e

z|z > z∗ij)− g(z∗ij)
∂z∗ij
∂τij

]
.

Now we must derive the partial derivative of the profitability threshold with respect to a

change in variable costs. To do so, we use the expression characterizing the threshold in
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equation (21):

∂z∗ij
∂τij

=
∂

∂τij
log

(
εwifij(wiτij)

ε−1(
ε−1
ε

)ε−1 YjP
ε−1
J

)
=
ε− 1

τij
.

Notice that the value of trade flows can be expressed as

Xij = εJiwifije
−z∗ij(1−Gij(z

∗
ij))Eij(e

z|z > z∗ij).

Therefore, the partial elasticity of trade is:

∂ logXij

∂ log τij
=

τij
Xij

· εJiwifij
[

1− ε
τij

e−z
∗
ij(1−Gij(z

∗
ij))Eij(e

z|z > z∗ij) + g(z∗ij)
1− ε
τij

]
= (1− ε) +

g(z∗ij)

1−Gij(z∗ij)
· (1− ε)ez∗ij
Eij(ez|z > z∗ij)

= (1− ε) + (1− ε)γij
= (1− ε)(1 + γij).

as desired. �

B.4 Conditional Expectations

Finally, we derive the conditional expectation for the Double EMG distribution. Given con-

ditional expectations, it is possible to compute the extensive margin elasticity from Propo-

sition 4. The conditional expectation of the Double EMG distribution in Proposition 5 as

follows.

Proposition 5 If z is a Double Exponentially Modified Gaussian distributed random vari-

able on (−∞,+∞) then the conditional first moment on (z∗,+∞) is∫ +∞

z∗
ezg(z)dz = Mz(1)

(
1− Φ

(
z∗ − µ
σ
− σ

))

+
1

λR − 1

λLλR
λL + λR

ez
∗−λR(z∗−µ)+σ2

2
λ2RΦ

(
z∗ − µ
σ
− λRσ

)

− 1

λL + 1

λLλR
λL + λR

ez
∗+λL(z∗−µ)+σ2

2
λ2LΦ

(
−z
∗ − µ
σ
− λLσ

)
.

Proof: Let x ∼ N (µ, σ2), y ∼ DE(λL, λR) and z be a Double EMG distributed random
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variable on (−∞,+∞). Then the conditional first moment on (z∗,+∞) is:∫ +∞

z∗
ezG(dz) =

[∫
x>z∗

∫
y>0

+

∫
x>z∗

∫ 0

z∗−x
+

∫
x<z∗

∫
y>z∗−x

]
ex+yf(x)g(y)dxdy

First take each integral in turn and define cases. The first (case is y > 0):∫
x>z∗

∫
y>0

ex+yf(x)g(y)dxdy =

∫
x>z∗

exf(x)dx ·
∫
y>0

eyg(y)dy

the second (case is y < 0):∫
x>z∗

∫ 0

z∗−x
ex+yf(x)g(y)dxdy =

∫
x>z∗

ex
[∫ 0

z∗−x
eyg(y)dy

]
f(x)dx

and, lastly, the third (case is y > 0):∫
x<z∗

∫
y>z∗−x

ex+yf(x)g(y)dxdy =

∫
x<z∗

ex
[∫

y>z∗−x
eyg(y)dy

]
f(x)dx

We can simplify the integrals in each case. Simplifying the first case:∫ +∞

z∗
exf(x)dx ·

∫ +∞

0

eyg(y)dy = eµ+σ2

2 Φ

(
−z
∗ − µ− σ2

σ

)
·
∫ ∞

0

ey
λLλR
λL + λR

e−λLydy

= eµ+σ2

2 Φ

(
−z
∗ − µ− σ2

σ

)
· λRλL
λR + λL

−1

λR − 1
e−(λR−1)y

∣∣∣∞
0

= eµ+σ2

2

(
1− Φ

(
z∗ − µ− σ2

σ

))
· λRλL
λR + λL

1

λR − 1

the second case:∫
x>z∗

ex
(∫ 0

z∗−x
ey

λRλL
λR + λL

eλLydy

)
f(x)dx

=

∫
x>z∗

ex
(

λRλL
λR + λL

1

λL + 1

(
1− e(λL+1)(z∗−x)

))
f(x)dx

=
λRλL
λR + λL

1

λL + 1

(
eµ+σ2

2 Φ

(
−z
∗ − µ− σ2

σ

)
− e(λL+1)z∗

∫
x>z∗

e−λLxf(x)dx

)

=
λRλL
λR + λL

1

λL + 1

(
eµ+σ2

2 Φ

(
−z
∗ − µ− σ2

σ

)
− ez∗+λL(z∗−µ)+

λ2Lσ
2

2 Φ

(
−z
∗ − µ+ λLσ

2

σ

))
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and, lastly, the third case:∫
x<z∗

ex
[∫

y>z∗−x
eyg(y)dy

]
f(x)dx

=

∫
x<z∗

ex
[
λRλL
λR + λL

−1

λR − 1

(
0− e−(λR−1)(z∗−x)

)]
f(x)dx

=
λRλL
λR + λL

1

λR − 1
e−(λR−1)z∗

∫
x<z∗

eλRxf(x)dx

=
λRλL
λR + λL

1

λR − 1
ez

∗−λR(z∗−µ)+
λ2Rσ

2

2 Φ

(
z∗ − µ− λRσ2

σ

)
Summing these integrals together we obtain:∫ +∞

z∗
ezH(dz) = eµ+σ2

2

(
1− Φ

(
z∗ − µ− σ2

σ

))
· λRλL
λR + λL

1

λR − 1

+
λRλL
λR + λL

1

λL + 1

(
eµ+σ2

2 Φ

(
−z
∗ − µ− σ2

σ

)
− ez∗+λL(z∗−µ)+

λ2Lσ
2

2 Φ

(
−z
∗ − µ+ λLσ

2

σ

))

+
λRλL
λR + λL

1

λR − 1
ez

∗−λR(z∗−µ)+
λ2Rσ

2

2 Φ

(
z∗ − µ− λRσ2

σ

)
Therefore, the final conditional expectation is:∫ +∞

z∗
ezH(dz) =

λRλL
λR + λL

(
1

λR − 1
+

1

λL + 1

)
eµ+σ2

2

(
1− Φ

(
z∗ − µ− σ2

σ

))

+
λRλL
λR + λL

1

λR − 1
ez

∗−λR(z∗−µ)+
λ2Rσ

2

2 Φ

(
z∗ − µ− λRσ2

σ

)

− λRλL
λR + λL

1

λL + 1
ez

∗+λL(z∗−µ)+
λ2Lσ

2

2 Φ

(
−z
∗ − µ+ λLσ

2

σ

)
where

λRλL
λR + λL

(
1

λR − 1
+

1

λL + 1

)
=

λRλL
(λR − 1)(λL + 1)

as desired. �

C Robustness
(For Online Publication Only)
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C.1 Alternative Origin Country

In this robustness check, we ask whether the novel properties of log-export sales distributions

and the truncation bias are specific to Brazilian export sales during 1990-2001. We replicate

each of our results using export sales data from a second country and verify that our results

are robust to changes in economic environment.

We use Peruvian export data for the period between 1993 and 2009 from the World

Bank Exporter Dynamics Database. For the detailed description of the data see Cebeci

et al. (2012), Fernandes et al. (2016), and Freund and Pierola (2012). The data set is

comparable to the Brazilian export data and reports the value of export sales at the firm-

product-destination-year level.

Table C1, Table C2, Figure C1, and Figure C2 reproduce Table 1, Table 3, Figure 1, and

Figure 4. We find that all results are qualitatively reproduced in the Peruvian data and in

many cases we find that relationships and parameter estimates are quantitatively similar.

C.2 Product Definition

In this robustness check, we ask whether whether the novel properties of log-export sales

distributions and the truncation bias are driven by the particular way in which manufac-

turing trade is defined in our paper. Specifically, prior to aggregating the data at the

firm-destination-year level, we drop any firm-product-destination-year observations for agri-

cultural products. If a firm simultaneously exports manufacturing and agricultural products,

our approach can potentially create an abundance of small firms that might not primarily

export manufacturing-industry products. Our data set does not contain an indicator of a

firm’s primary industry of operation. Hence, we check the robustness of our results by drop-

ping all firms that export at least one non-manufacturing product within a destination-year.

The firms that remain only export manufacturing products.

Across firm-destination-year bins, 10% of firms export any non-manufacturing prod-

ucts. For an average firm, measured as the unconditional mean across firm-destination-

years, non-manufacturing products account for 9% of export revenue. However, for those

firms that export any non-manufacturing products, revenues are highly concentrated in non-

manufacturing products with non-manufacturing products accounting for 92% of export

revenue on average. Therefore, the main text included the remaining 8% of export sales

from these 10% of firms. This section altogether excludes all sales, manufacturing and non-

manufacturing, from these 10% of firms.

Table C3, Table C4, and Figure C3 reproduce Table 1, Table 3, and Figure 4. We find

that all quantitative results are nearly unchanged.
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C.3 Industrial Composition

In Section 4.2 of the paper we applied the estimation procedure outlined in Section 4.1 to

estimate the distribution parameters for each of the observations in our sample. Recall that

we define an observation to be a distribution of log-export sales for a given export destination

in a given year. We conduct our analysis at the country, rather than country-industry, level

to make our results comparable to those in the literature.34 We acknowledge that properties

of distributions might vary with the industrial composition of exports across destinations. To

check the robustness of our results, we repeat our estimation for the log-export sales at the

destination-year-industry level. We find that there is no statistically significant relationship

between industry shares and skewness within destination-year observations. Therefore, no

single industry drives tail fatness or skewness across destination-years, and the distribution

estimation results remain quantitatively similar.

Table C5 reproduces results from Table 1 and reports statistics over destination-year

observations in which each firm’s sales of products within a particular industry are de-

meaned by that industry’s destination-year average. The table shows that controlling for

industry composition induces negative skewness, fatter left tails and thinner left tails of

destination-year(-industry) observations. Therefore, controlling for industry composition ar-

tificially shrinks the size of firms across industries and has no economic significance within

the class of trade models studied in this paper.

Figure C4 reproduces Figure 4 and shows the Double EMG provides a superior fit to

export sales data across destination-year observations. This is because left tails become

fatter after controlling for industry composition.

34 Head et al. (2014) estimate the distributions of log-export sales of French firms in Belgium and Chinese
firms in Japan, Bas et al. (2015) estimate distributions of log-export sales for each of the French and
Chinese export destinations, Nigai (2017) for total French exports.
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Table C1: Properties of the log-sales distribution across destination-year observations over 1993-
2009, Peru.

Statistic Mean Meian Standard

Deviation

Min Max

Panel A: Moment based statistics

Standard Deviation 2.64 2.62 0.37 1.86 3.82

Skewness -0.12 -0.13 0.34 -1.23 1.16

Nonparametric Skew 0.02 0.02 0.07 -0.29 0.31

Kurtosis 3.59 3.49 0.75 2.11 7.12

Panel B: Percentile based statistics

Interquartile Range 3.42 3.37 0.47 2.35 4.96

Kelly Skewness 0.05 0.05 0.11 -0.37 0.53

Percentile Coefficient of Kurtosis 0.26 0.26 0.02 0.15 0.33

Panel C: Tail parameter estimates

Top 5% 1.17 1.08 0.46 0.42 3.77

Top 10% 0.997 0.96 0.33 0.37 3.16

Top 15% 0.89 0.86 0.25 0.36 1.81

Bottom 5% 0.74 0.63 0.46 0.25 5.22

Bottom 10% 0.69 0.60 0.31 0.31 3.38

Bottom 15% 0.69 0.62 0.25 0.31 2.21

Panel D: Other

Average-to-minimum ratio 7,113,788.69 205,256.20 33,642,347 219.75 395,262,848

Note: the statistics are reported across 415 destination-year observations where at least 100 firms export.
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Table C2: Trade elasticity estimates, Peru.

Truncation Point Extensive Margin Partial Trade Elasticity,

Elasticity, γij |(1− ε)(1 + γij)|
Mean Std. Dev. Mean Std. Dev.

Panel A: Elasticity Estimates - Full Sample

No truncation 2.3 · 10−6 2.2 · 10−5 5.00 1.1 · 10−4

Panel B: Elasticity Estimates - Truncated Samples

$5,000 0.002 0.003 5.01 0.01

$50,000 0.023 0.037 5.11 0.19

$100,000 0.041 0.064 5.20 0.32

$250,000 0.084 0.136 5.42 0.68

Panel C: Sample Truncation Bias

$5,000 1.002 0.003

$50,000 1.023 0.037

$100,000 1.041 0.064

$250,000 1.084 0.136

Note: Panel A reports sample means and standard deviations of the
corresponding elasticity estimates. Panel B of the table reports sample means
and standard deviations of the elasticity estimates from truncated samples as
indicated in the first column. Panel C reports statistics for the ratio of the
corresponding elasticity estimates from a truncated sample relative to the full
sample. To compute the partial trade elasticity, the value of ε = 6 is assumed.
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Table C3: Properties of the log-sales distribution across destination-year observations
over 1990-2001, sample selection robustness.

Statistic Mean Median Standard

Deviation

Min Max

Panel A: Moment based statistics

Standard Deviation 2.10 2.11 0.28 1.28 2.76

Skewness 0.03 0.02 0.24 -1.07 1.25

Nonparametric Skew 0.03 0.03 0.06 -0.20 0.20

Kurtosis 3.16 3.03 0.58 2.08 8.17

Panel B: Percentile based statistics

Interquartile Range 2.81 2.82 0.49 1.49 4.31

Kelly Skewness 0.05 0.05 0.08 -0.30 0.35

Percentile Coefficient of Kurtosis 0.26 0.26 0.02 0.19 0.34

Panel C: Tail parameter estimates

Top 5% 1.43 1.29 0.62 0.40 6.67

Top 10% 1.19 1.14 0.31 0.48 3.05

Top 15% 1.08 1.05 0.25 0.53 2.75

Bottom 5% 1.22 1.14 0.53 0.44 7.51

Bottom 10% 1.08 1.04 0.29 0.45 3.67

Bottom 15% 1.02 0.99 0.24 0.48 2.77

Panel D: Other

Average-to-minimum ratio 57,927.67 5,083.31 251,338.06 32.73 2,844,461

Note: the statistics are reported across 845 destination-year observations where at least 100 firms
export.
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Table C4: Trade elasticity estimates, sample selection robustness.

Truncation Point Extensive Margin Partial Trade Elasticity,

Elasticity, γij |(1− ε)(1 + γij)|
Mean Std. Dev. Mean Std. Dev.

Panel A: Elasticity Estimates - Full Sample

No truncation 1.4 · 10−5 7.7 · 10−5 5.00 3.8 · 10−4

Panel B: Elasticity Estimates - Truncated Samples

$5,000 0.003 0.006 5.02 0.03

$50,000 0.043 0.066 5.21 0.33

$100,000 0.076 0.124 5.38 0.62

$250,000 0.149 0.286 5.74 1.43

Panel C: Sample Truncation Bias

$5,000 1.003 0.006

$50,000 1.043 0.066

$100,000 1.076 0.124

$250,000 1.149 0.286

Note: Panel A reports sample means and standard deviations of the
corresponding elasticity estimates. Panel B of the table reports sample means
and standard deviations of the elasticity estimates from truncated samples as
indicated in the first column. Panel C reports statistics for the ratio of the
corresponding elasticity estimates from a truncated sample relative to the full
sample. To compute the partial trade elasticity, the value of ε = 6 is assumed.
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Table C5: Properties of the log-sales distribution across destination-year observations over
1990-2001, industry composition robustness.

Statistic Mean Median Standard

Deviation

Min Max

Panel A: Moment based statistics

Standard Deviation 1.99 2.01 0.27 1.25 2.70

Skewness -0.31 -0.28 0.28 -1.51 0.40

Nonparametric Skew -0.04 -0.04 0.06 -0.26 0.14

Kurtosis 3.16 3.01 0.65 2.15 8.12

Panel B: Percentile based statistics

Interquartile Range 2.70 2.72 0.41 1.62 3.86

Kelly Skewness -0.04 -0.03 0.09 -0.41 0.21

Percentile Coefficient of Kurtosis 0.27 0.27 0.02 0.18 0.34

Panel C: Tail parameter estimates

Top 5% 2.25 1.93 3.18 0.63 90.45

Top 10% 1.73 1.63 0.54 0.83 8.69

Top 15% 1.52 1.46 0.40 0.92 5.35

Bottom 5% 1.14 1.05 0.49 0.36 4.44

Bottom 10% 1.02 0.97 0.30 0.38 2.65

Bottom 15% 0.96 0.93 0.24 0.42 2.13

Panel D: Other

Average-to-minimum ratio 128,580.14 3,505.19 865,575.00 42.99 16,794,698

Note: the statistics are reported across 847 destination-year observations where at least 100 firms
export.
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Figure C1: Heterogeneity in the tail index estimates of log-sales distributions across export
destinations, a scatter plot, Peru.
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destination-year observation. A sample of 415 destination-year observations where at least 100 first export.

Figure C2: Goodness of fit statistics across each destination-year observation, Peru.
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Figure C3: Goodness of fit statistics across each destination-year observation, sample selec-
tion robustness.
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Figure C4: Goodness of fit statistics across each destination-year observation, industry com-
position robustness.
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