QUALITY LADDERS WITH FINANCIAL FRICTIONS (MIDWEST MACRO CONFERENCE, 2011)

Erick Sager

University of Minnesota

May 20, 2011

MOTIVATION

- Hsieh and Klenow (2009) measure resource misallocation across firms in China, India and the US
- Measure misallocation as a wedge between MP and factor price
 - Find large aggregate misallocation in China/India relative to the US
- What is the difference in TFP if China/India exhibited US level of misallocation?
 - India $\approx 40\%$ gain in TFP
 - China $\approx 50\%$ gain in TFP
- What generates these wedges?

MOTIVATION

- Recent literature: Do **financial frictions** cause large TFP losses by hindering the process of reallocation?
 - Buera, Kaboski, Shin (2011): $\approx 50\%$ TFP losses, large misallocation
 - Moll (2010): $\approx 25\%$ TFP losses, medium misal location
 - Midrigan and Xu (2010): $\approx 5\%$ TFP losses, small misallocation
- Prediction of this class of models:
 - Positive correlation between average firm size and financial development
 - Looser borrowing constraints allow all firms to grow faster
 - More reallocation from low productivity to high productivity firms
- This correlation is counterfactual:
 - The data exhibit a negative correlation (Alfaro and Charlton, 2010)

This Paper

- I construct a model with a negative correlation between average firm size and financial development
- I use the model to study misallocation
- I embed financial contracting in an endogenous growth model:
 - Quality Ladders: Grossman & Helpman (1991), Aghion & Howitt (1992)
 - Enforcement Frictions: Albuquerque & Hopenhayn (2004)
 - General Equilibrium: Lucas (1990), Gertler & Karadi (2011)

PREVIEW OF RESULTS

PREVIEW OF RESULTS

PREVIEW OF RESULTS

<u>Point 1:</u> Do financial frictions cause large **TFP** losses by hindering the process of reallocation?

- No.
- Large resource misallocation across firms can indicate high TFP.
- Foregone firm entry directly decreases TFP.

<u>Point 2:</u> Do financial frictions cause large **welfare** losses by hindering the process of reallocation?

- No.
- Welfare costs of misallocation across firms are small compared to losses from foregone entry.

Environment

- $t \in [0,\infty)$
- Agents:
 - Final Good Producers (FPG)
 - Intermediate Good Producers (IGP), unit continuum
 - Financial Intermediaries (FI) new -
 - Consumers
 - Laborers
 - Researchers
- Goods:
 - Single final consumption good (numeraire)
 - Differentiated intermediate goods, $\omega \in [0,1]$

FINAL GOOD PRODUCTION

$$\max_{x_{jt}(\omega)\}} y_t - \int_0^1 \sum_{j=1}^{n_t(\omega)} p_{jt}(\omega) x_{jt}(\omega) d\omega$$

s.t. $y_t = \exp\left(\int_0^1 \ln\left(\sum_{j=1}^{n_t(\omega)} x_{jt}(\omega)\right) d\omega\right)$

- Purchases intermediate inputs $\{x_{jt}(\omega)\}\$ at given prices $\{p_{jt}(\omega)\}\$
- Sells y_t units of the Final Good to Consumers
- Perfectly competitive market

{

INTERMEDIATE GOOD PRODUCERS

- Vintages:
 - Commodity ω can be produced by multiple IGPs.
 - Over time, new IGPs enter with a new technology for producing $\omega.$
 - Vintages: $j = 1, 2, \ldots, n_t(\omega)$.
- Production:
 - The owner of technology j for producing commodity ω :

•
$$x_{jt}(\omega) = \lambda^j L_{jt}(\omega)$$
, for $\lambda > 1$

- Labor costs w_t per unit.
- Market Structure:
 - Bertrand competition in each ω -market.
 - IGP j chooses price of output $p_{jt}(\omega)$.

INNOVATION

- Measure N of consumers
- Each endowed with 1 unit of labor time, inelastically supplied
- At each t, choose between:
 - Wage labor:
 - ▶ Receive w_t from IGP
 - Researcher *i* in market ω :
 - Innovates blueprint for vintage $n_t(\omega) + 1$ with Poisson rate Γ
 - If successful, manages intermediate firm with NPV $v_{t,0}(\omega)$
 - If unsuccessful, zero payoff
- Entry Condition: $\Gamma v_{t,0}(\omega) \leq w_t$, (w.e. if $m_t(\omega) > 0$)

• Intermediation:

- Upon innovating, a firm must pay a fixed entry cost: I_t .
- Assume: Researcher has zero wealth
 - Researcher cannot pay initial fixed cost
- Enters into a contract with a Financial Intermediary
- A recursive contract is a set of functions $C = \{L, \delta, \dot{v}\}$
 - C maps (t, a, n_j, n_t) to:
 - \blacktriangleright L: firm size / production scale
 - δ : payment to Firm
 - \dot{v} : continuation value to Firm

• Timing:

- (I) Age 0 (firm setup):
 - Firm sets price $\{p_{t+s}\}_{s=0}^{\infty}$
 - Competitive Financial Intermediaries offer contracts
 - Firm chooses a contract or none at all
 - $\blacktriangleright\,$ If firm accepts, Financial Intermediary pays I_t

• Timing:

- (I) Age 0 (firm setup):
 - Firm sets price $\{p_{t+s}\}_{s=0}^{\infty}$
 - Competitive Financial Intermediaries offer contracts
 - Firm chooses a contract or none at all
 - $\blacktriangleright\,$ If firm accepts, Financial Intermediary pays I_t
- (II) Age 0 (stage game):
 - Intermediary transfers $w_t L_{t,0}$ to Firm
 - Firm purchases labor, produces and sells output
 - Firm chooses whether to steal fraction γ of profits
 - ▶ If Firm does not steal: keeps payment $\delta_{t,0}$ and pays residual to FI
 - ▶ If Firm steals:
 - $\rightarrow\,$ If undetected, keeps stolen profits and payment $\delta_{t,0};$ pays residual to FI
 - \rightarrow If detected, then FI seizes profits and uses new contract $\{\psi \delta_{t,a}\}_{a=0}^{\infty}$

• Timing:

- (I) Age 0 (firm setup):
 - Firm sets price $\{p_{t+s}\}_{s=0}^{\infty}$
 - Competitive Financial Intermediaries offer contracts
 - Firm chooses a contract or none at all
 - $\blacktriangleright\,$ If firm accepts, Financial Intermediary pays I_t
- (II) Age 0 (stage game):
 - Intermediary transfers $w_t L_{t,0}$ to Firm
 - Firm purchases labor, produces and sells output
 - Firm chooses whether to steal fraction γ of profits
 - ▶ If Firm does not steal: keeps payment $\delta_{t,0}$ and pays residual to FI
 - ▶ If Firm steals:
 - $\rightarrow\,$ If undetected, keeps stolen profits and payment $\delta_{t,0};$ pays residual to FI
 - $\rightarrow~$ If detected, then FI seizes profits and uses new contract $\{\psi \delta_{t,a}\}_{a=0}^\infty$
- (III) Age a > 0
 - Repeat stage game

• A contract is *optimal* if it satisfies $\forall (t, a)$:

$$r_{t}b(v_{t,a}) = \max_{\mathcal{C}} \pi_{t,a} - \delta_{t,a} + b'(v_{t,a})\dot{v}_{t,a} - \Gamma m_{t}b(v_{t,a})$$

s.t. $r_{t}v_{t,a} = \delta_{t,a} + \dot{v}_{t,a} - \Gamma m_{t}v_{t,a}$
 $\delta_{t,a} + \dot{v}_{t,a} \ge \theta \pi_{t,a}$
 $\delta_{t,a} \ge 0$

- $\theta \ge 0$: strength of enforcement
- Γm_t : probability of entry
- Break-Even Constraint: $b(v_{t,0}) \ge I_t$

REP. CONSUMER (FAMILY)

• Individuals solve:

• Family Planner allocates consumption and savings:

$$J(a_0) = \max_{(c_t, \dot{a}_t)} \int_0^\infty e^{-\rho t} \log(c_t) dt$$

s.t. $\dot{a}_t = w_t L_t + \Pi_t + r_t a_t - c_t$
 $c_t^i = c_t^j \ \forall i, j \in [0, N]$

Equilibrium

Equilibrium:

- Standard competitive equilibrium definition.
- I consider equilibrium allocations along a Balanced Growth Path.

I now characterize the allocation and show:

- <u>Point 1:</u> Large resource misallocation across firms can be indicative of a relatively well functioning economy.
- <u>Point 2</u>: Welfare costs of misallocation across firms are small compared to losses from lack of entry.

Optimal Contract

$$\overset{=0}{\delta_0} \stackrel{\uparrow}{+} \overset{\downarrow}{v_0} \ge \overset{\uparrow}{\theta} \left(p \lambda^n L_0 - w L_0 \right)$$

To loosen enforcement constraint:

- Decrease initial scale of production: $L_0 \downarrow$
- Push payments to firm into the future:
 - Zero payment until the firm reaches its optimal scale
 - The intermediary chooses how long the firm is constrained
 - As enforcement weakens $(\theta \uparrow)$, longer length of time constrained

ENTRY

Profits:

- The most productive firm selling ω receives monopoly rents
- The second most productive firm receives zero profits

Therefore,

- The longer a firm is constrained the more likely :
 - a more productive firm enters the market
 - the incumbent firm loses its monopoly before receiving a payment
- Which discourages entry

MISALLOCATION

<u>Point 1:</u> Large resource misallocation across firms can be indicative of a relatively well functioning economy.

Define two types of misallocation:

- Intensive Margin Misallocation (across firms)
 - The fraction of total labor that is **not** hired by the most productive firm in each commodity market
- Extensive Margin Misallocation (entry distortion)
 - The decrease in entry relative to "full enforcement" entry rate

MISALLOCATION

WELFARE

<u>Point 2:</u> Welfare costs of misallocation across firms are small compared to losses from lack of entry.

- Compute utility of competitive equilibrium allocation
- Decompose utility into contribution from
 - Intensive Margin Misallocation (across firms)
 - Extensive Margin Misallocation (entry distortions)

WELFARE

CONCLUSION

This paper:

- Added financial frictions to a standard Quality Ladder model
- Used the model to study different types of misallocation
- Found:
 - Misallocation across firms is problematic for understanding TFP losses
 - Distortions to entry generate (nearly) all TFP and welfare losses

International Topics:

• The model could be extended to introduce financial frictions in Eaton & Kortum's trade model.